Prof. Dr. Dongxing Song | Machine Learning | Best Researcher Award-3904

Prof. Dr. Dongxing Song | Machine Learning | Best Researcher Award

Prof. Dr. Dongxing Song, Zhengzhou University, China

Prof. Dr. Dongxing Song is an innovative researcher in power engineering and thermophysics, currently serving as a Research Fellow at Zhengzhou University’s School of Mechanics and Safety Engineering. He earned his doctoral degree from Tsinghua University and previously studied at Xi’an Jiaotong University and Central South University. His expertise lies in nanofluid dynamics, ionic thermoelectric conversion, and energy system optimization. Dr. Song’s research integrates machine learning with thermodynamics, pushing boundaries in sustainable energy technologies. His work has been published in top-tier journals such as Joule and Cell Reports Physical Science, gaining recognition for both originality and technical depth. Driven by scientific rigor and curiosity, Dr. Song continues to shape future solutions for clean energy and advanced material systems. ⚛️🔬🌱

🌍 Professional Profile 

Orcid

Google Scholar

🏆 Suitability for Best Researcher Award 

Prof. Dr. Dongxing Song is a standout candidate for the Best Researcher Award due to his cutting-edge work in ionic thermoelectric energy conversion and nanoscale heat transfer. His publications in high-impact journals, including Joule and Cell Reports Physical Science, demonstrate his role in shaping the future of clean and efficient energy generation. Dr. Song has independently led national-level research projects supported by the NSFC and China Postdoctoral Science Foundation, focusing on ion-electron coupling mechanisms and dynamic heat-mass transport. His interdisciplinary approach—blending thermophysics, machine learning, and materials science—makes him a trailblazer in green energy innovation. His research not only advances scientific understanding but also offers scalable solutions for low-grade waste heat recovery. 🔋🏅🌍

🎓 Education

Prof. Dr. Dongxing Song holds a robust academic background in power engineering and thermophysics. He completed his Ph.D. at Tsinghua University (2018–2022) under Prof. Weigang Ma, following his Master’s studies at Xi’an Jiaotong University (2015–2018) under Prof. Dengwei Jing. His foundational education in Thermal Energy and Power Engineering was completed at Central South University (2011–2015), where he was mentored by Dengwei Jing and Jianzhi Zhang. Throughout his academic journey, Dr. Song developed deep expertise in energy conversion, ionic transport, and thermodynamic modeling. His cross-institutional training at China’s most prestigious engineering schools laid the groundwork for his innovative and interdisciplinary research in the clean energy domain. 🎓📘⚙️

💼 Experience

Since February 2022, Dr. Dongxing Song has served as a Research Fellow at the School of Mechanics and Safety Engineering, Zhengzhou University, contributing significantly to ionic thermoelectric research. He previously pursued advanced research at Tsinghua University, one of China’s top engineering institutions, from 2018 to 2022. His earlier academic appointments include graduate research at Xi’an Jiaotong University and Central South University, where he gained hands-on experience in power engineering, energy optimization, and thermophysical modeling. In every role, Dr. Song has demonstrated scientific leadership, managing national-level projects and publishing influential research. His experience reflects a well-rounded career rooted in high-impact research and technological innovation in sustainable energy. 🧑‍🔬🔋📈

🏅 Awards and Honors

Prof. Dr. Dongxing Song has received prestigious grants and recognition from leading national institutions. He is the Principal Investigator of a National Natural Science Foundation of China (NSFC) Original Exploration Program Project, as well as multiple China Postdoctoral Science Foundation awards, including the Innovative Talents Grant (BX20220275). His work on ion thermoelectric conversion received a high recommendation from Joule Preview, marking him as a rising star in energy systems innovation. Dr. Song’s publications in top-impact journals and his ability to secure competitive funding reflect his academic excellence and research potential. These accolades highlight his position as a thought leader in the next generation of thermophysical science and energy innovation. 🥇🏛️📚

🔬 Research Focus

Dr. Dongxing Song’s research centers on the optimization of power generation systems for low-grade waste heat recovery, specifically using ion thermoelectric conversion and salt gradient power. He investigates the fundamental coupling between heat and ion transport and has derived a new expression for the ionic Seebeck coefficient, setting the stage for thermoelectric optimization. His studies also integrate nanofluidic heat transfer, solid-state ion battery transport, and machine learning to enhance the performance of sustainable energy devices. His broader focus includes nanoscale heat and mass transfer, where he explores transport mechanisms across interfaces using simulation and experimental validation. Dr. Song’s pioneering models are helping redefine energy recovery systems with enhanced efficiency and low environmental impact. 🔬♻️🧪

📊 Publication Top Notes

  • Design of Microchannel Heat Sink with Wavy Channel and Its Time-Efficient Optimization with Combined RSM and FVM Methods

    • Citations: 209
    • Year: 2016

  • Optimization of a Circular-Wavy Cavity Filled by Nanofluid under Natural Convection Heat Transfer

    • Citations: 194
    • Year: 2016

  • Optimization of a Lid-Driven T-Shaped Porous Cavity to Improve the Nanofluids Mixed Convection Heat Transfer

    • Citations: 138
    • Year: 2017

  • Prediction of Hydrodynamic and Optical Properties of TiO₂/Water Suspension Considering Particle Size Distribution

    • Citations: 87
    • Year: 2016

  • A Nitrogenous Pre-Intercalation Strategy for the Synthesis of Nitrogen-Doped Ti₃C₂Tₓ MXene with Enhanced Electrochemical Capacitance

    • Citations: 71
    • Year: 2021

 

Prof. Dr. Brigitte Jaumard | Machine Learn Award | Best Researcher Award

Prof. Dr. Brigitte Jaumard | Machine Learn Award | Best Researcher Award

Prof. Dr. Brigitte Jaumard, Concordia University, Canada

Prof. Dr. Brigitte Jaumard is a distinguished professor in the Computer Science and Software Engineering Department at Concordia University, Canada. She has a prolific career in academia and research, holding multiple prestigious roles, including Tier I Canada Research Chair (CRC) in Optimization of Communication Networks. Her work spans over several decades, and she has contributed significantly to the fields of artificial intelligence, communication networks, and optimization. Dr. Jaumard has also held leadership positions at the Computer Research Institute of Montreal (CRIM) and has been recognized for her innovative work in AI and machine learning. She has received numerous awards, including Best Paper Awards at international conferences. 🌟

Professional Profile

Google Scholar

Suitability for Award

Prof. Dr. Brigitte Jaumard is an ideal candidate for the Research for Best Researcher Award due to her outstanding contributions to the fields of artificial intelligence, optimization, and communication networks. Her leadership in research, exemplified by her role as a Tier I Canada Research Chair and her work in AI and machine learning, has made significant strides in both theoretical and applied research. Prof. Jaumard’s numerous awards and honors further attest to the high regard in which her work is held. Her impactful research and dedication to advancing technology make her an excellent choice for this prestigious award. 🏆

Education

🎓 Prof. Dr. Brigitte Jaumard holds a Thèse d’Habilitation from Université Pierre et Marie Curie, Paris (1990), and a Ph.D. in Electrical Engineering from École Nationale Supérieure des Télécommunications (ENST), Paris, with the highest honors in 1986. She also completed a DEA (M.Sc.) in Artificial Intelligence from Université Paris VI (1984) and a degree in Computer Engineering/Information System Engineering from Institut d’Informatique d’Entreprise (1983). Her educational background laid a solid foundation for her career in optimization, AI, and communication networks. 📘

Experience

🧑‍🏫 Prof. Jaumard has held several prestigious academic appointments, including as a professor at Concordia University since 2010, where she currently teaches and conducts research in optimization and AI. She served as a Tier I Canada Research Chair in Optimization of Communication Networks from 2001 to 2019. Additionally, Prof. Jaumard has been involved in administrative roles, such as the Scientific Director of CRIM and Principal Data Scientist at Ericsson’s Global AI Accelerator. Her leadership in both academic and industrial research has made significant impacts on AI and network optimization. 🌍

Awards and Honors

🏅 Prof. Jaumard has received multiple accolades, including Best Paper Awards at the IEEE International Symposium on Measurements & Networking (2022) and IEEE Sarnoff Symposium (2017). She also ranked 1st in the 2022 ITU Artificial Intelligence/Machine Learning in 5G Challenge (Graph Neural Networking) and 2nd in 2021. These awards highlight her groundbreaking contributions to AI, machine learning, and network optimization. Her consistent recognition in prestigious conferences and competitions underscores her expertise and leadership in the field. 🌟

Research Focus

🔬 Prof. Jaumard’s research focuses on optimization of communication networks, artificial intelligence, machine learning, and data-centric AI. She has made significant contributions to the development of scalable network models, including network digital twins, and has advanced the application of graph neural networks in communication systems. Her work in AI spans across both theoretical aspects and real-world applications, particularly in optimizing network performance and improving AI systems’ reliability. Prof. Jaumard’s research has had a lasting impact on both academia and industry. 🧑‍💻

Publication Top Notes:

  • New branch-and-bound rules for linear bilevel programming
    • Year: 1992
    • Citations: 969
  • Cluster analysis and mathematical programming
    • Year: 1997
    • Citations: 961
  • Algorithms for the maximum satisfiability problem
    • Year: 1990
    • Citations: 558
  • A generalized linear programming model for nurse scheduling
    • Year: 1998
    • Citations: 408
  • A branch and cut algorithm for nonconvex quadratically constrained quadratic programming
    • Year: 2000
    • Citations: 262

 

Dr. Thomas Kotoulas | Artificial Intelligence Award | Best Researcher Award

Dr. Thomas Kotoulas | Artificial Intelligence Award | Best Researcher Award

Dr. Thomas Kotoulas, Aristotle University of Thessaloniki, Greece, Greece

Dr. Thomas Kotoulas is a renowned physicist specializing in Newtonian dynamics and celestial mechanics. He has built a distinguished career in the study of dynamical systems, particularly the behavior of small bodies in the outer Solar System. He is currently a researcher at the University of Thessaloniki, where he earned his B.Sc. in Physics (1995) and Ph.D. in Physics (2003). Over the years, Kotoulas has become a key figure in the field of celestial mechanics, with numerous publications and contributions to the study of periodic orbits, stability, and resonance dynamics. His expertise extends to inverse problems in Newtonian dynamics and its applications in astronomy. Dr. Kotoulas has been awarded for his excellence as an external reviewer and continues to significantly contribute to the advancement of his research areas.

Professional Profile:

Google Scholar

Scopus

Summary of Suitability for Award:

Dr. Thomas Kotoulas is a strong contender for the Best Researcher Awards. His in-depth expertise, consistent scholarly output, contributions to high-impact research, leadership in projects, and acknowledgment from prestigious journals position him as a leading figure in the field of celestial mechanics. Given his outstanding research achievements and influential role in advancing scientific knowledge, Dr. Kotoulas is undoubtedly deserving of recognition as a top researcher in his field.

🎓Education: 

Dr. Kotoulas completed his B.Sc. in Physics at the Department of Physics at Aristotle University of Thessaloniki (A.U.Th.). He further pursued his postgraduate studies, culminating in a Ph.D. in Physics from the same department in 2003. His doctoral research focused on the dynamical evolution of small bodies in resonant areas within the outer Solar System, for which he received an excellent evaluation. His Ph.D. work was supervised by Professor John D. Hadjidemetriou. In addition to his academic qualifications, Dr. Kotoulas was awarded a fellowship from the National Foundation of Fellowships (Ι.Κ.Υ.) during his doctoral studies, where he specialized in dynamical systems and celestial mechanics. His academic journey was marked by excellence, shaping his future contributions to the scientific community in the fields of celestial mechanics and dynamics.

🏢Work Experience:

Dr. Kotoulas has accumulated extensive experience in the field of celestial mechanics and dynamical systems. He has worked on several significant research projects, including the “Dynamics of the restricted three-body problem and applications in Celestial Mechanics,” which was funded by the Greek Ministry of Education and the European Community. As a post-doctoral researcher, he contributed to the study of retrograde periodic orbits in the restricted three-body problem, focusing on applications in asteroids and the Kuiper Belt. Over the years, he has also served as a reviewer for several esteemed journals, such as “Celestial Mechanics and Dynamical Astronomy,” “Astrophysics and Space Science,” and “Research in Astronomy and Astrophysics.” His academic career is marked by his deep involvement in the application of inverse problems in Newtonian dynamics, which he continues to explore and develop through his research.

🏅Awards:

Dr. Thomas Kotoulas has received several prestigious awards and honors throughout his career. Notably, he was recognized as one of the best external reviewers for the journal “Research in Astronomy and Astrophysics” in 2022, receiving the Outstanding Reviewer Award for his valuable contributions. He also received a letter of recognition from Dr. Fabio Santos, the Publishing Editor of “Astrophysics and Space Science,” for his outstanding work as a reviewer during 2021 and 2022. Furthermore, Dr. Kotoulas was included in the Mathematical Reviews database, where he has written reviews for numerous papers on celestial mechanics. His work has been consistently acknowledged by the scientific community, affirming his expertise in dynamical systems and celestial mechanics. These honors highlight his significant contributions to the field, particularly in the areas of celestial mechanics, dynamics, and inverse problems.

🔬Research Focus:

Dr. Kotoulas’ primary research focus lies in the field of Newtonian dynamics and celestial mechanics, with an emphasis on the restricted three-body problem, orbital stability, and resonance dynamics. His research explores the dynamical evolution of small bodies, particularly in the outer Solar System, and how these bodies behave under the influence of resonances with larger celestial bodies. He specializes in the computation of families of periodic orbits, spectral analysis, and stability/instability in resonance regions. Additionally, Dr. Kotoulas works on inverse problems in Newtonian dynamics, applying them to astronomy and galactic dynamics. His work involves finding generalized force fields from families of orbits, as well as applying these techniques to improve our understanding of the structure and stability of orbital systems. Through his research, Dr. Kotoulas has significantly contributed to advancing theoretical models that describe the motion of celestial bodies and their dynamical interactions.

Publication Top Notes: 

  • “Planar Periodic Orbits in Exterior Resonances with Neptune”
    • Citations: 44
  • “Comparative Study of the 2:3 and 3:4 Resonant Motion with Neptune: An Application of Symplectic Mappings and Low Frequency Analysis”
    • Citations: 43
  • “On the Stability of the Neptune Trojans”
    • Citations: 34
  • “Symmetric and Nonsymmetric Periodic Orbits in the Exterior Mean Motion Resonances with Neptune”
    • Citations: 32
  • “On the 2/1 Resonant Planetary Dynamics–Periodic Orbits and Dynamical Stability”
    • Citations: 31

 

 

 

 

Dr. Julius Olaniyan | Machine Learning Award |Best Researcher Award

Dr. Julius Olaniyan | Machine Learning Award |Best Researcher Award

Dr. Julius Olaniyan, Bowen University, Nigeria 

Olaniyan Julius in Odo-Owa, Kwara State, Nigeria. He is a Lecturer II in the Computer Science Department at Bowen University, Iwo, Osun State, Nigeria. Julius holds a Ph.D. in Computer Science (2023) and has extensive experience in software development, data analysis, and teaching. He has worked in several institutions, including Landmark University, Federal Polytechnic Auchi, and Feghas Solutions Ltd. Over his career, he has developed various applications using programming languages such as C, C++, Java, Python, and PHP. Julius specializes in Artificial Intelligence, Computer Vision, Natural Language Processing, and Machine Translation. A devoted husband and father of three, Julius is passionate about advancing AI and its application in healthcare and education. He has contributed to several innovative research papers in the field of computer science and AI.

Professional Profile:

Google Scholar

Summary of Suitability for Award:

Dr. Olaniyan has demonstrated outstanding proficiency and expertise in the fields of Artificial Intelligence, Computer Vision, Natural Language Processing, and Machine Translation, with a solid academic background in Computer Science. He holds a Ph.D. in Computer Science from Landmark University, and has published extensively in high-impact journals and conferences. His work on cataract detection using deep learning, as well as his innovative contributions in areas like speech refinement and emotion recognition, highlights his commitment to advancing technology for real-world applications. Furthermore, his ability to collaborate across interdisciplinary research teams and contribute to several peer-reviewed articles reflects his academic rigor and leadership.

🎓Education: 

Olaniyan Julius completed his Ph.D. in Computer Science at Landmark University (2023). He also holds a Master’s in Computer Science (M.Tech) from the Federal University of Technology, Akure (2019), where he also earned a Postgraduate Diploma (PGD) in 2012. Julius started his academic journey with a Bachelor’s in Computer Science from the Federal University of Oye Ekiti (2022). His earlier qualifications include a Higher National Diploma (HND) in Computer Science from Auchi Polytechnic (2006), and a National Diploma (ND) in the same field (2000). Julius completed his Secondary Education at Orota Community High School, Odo-Owa (1994) and his Primary Education at St. Thomas Catholic School (1988). His strong educational foundation in Computer Science has shaped his successful academic and professional career.

🏢Work Experience:

Olaniyan Julius has a diverse career in academia and industry. He is currently a Lecturer II at Bowen University, Nigeria. Previously, he served as a Lecturer II at Landmark University (2023-2024) and as a Data Analyst at Federal Polytechnic Auchi (2013-2022). His industry experience includes working as a Software Developer/Business Developer at Feghas Solutions Ltd. (2009-2012) and a Tutor/Application Developer at Pesoka Systems Ltd. (2008). Julius also has teaching experience from his time as a Lecturer during his NYSC service at Maritime Academy of Nigeria (2007-2008). His early career included roles like Data Processing Officer at Ajaokuta Steel Company (2002-2004) and School Database Admin at Sani Bello Secondary School (2001). Julius’s experience spans academic teaching, research, software development, data analysis, and project management.

🏅Awards:

Olaniyan Julius has received numerous accolades throughout his academic and professional journey. His Ph.D. dissertation was highly recognized, contributing to his recognition as an emerging scholar in Computer Science. He was awarded a best student award during his time at Landmark University and has been recognized by the Federal Polytechnic Auchi for his outstanding performance as a Data Analyst. Julius’s commitment to education and research has earned him several institutional commendations for his efforts in developing AI-driven solutions in healthcare and education. His research in Artificial Intelligence and Machine Translation has garnered him recognition at international conferences. He is also an active member of several professional organizations in computer science and artificial intelligence. Julius’s leadership and contributions to academic and professional initiatives have cemented his reputation as a passionate educator and researcher.

🔬Research Focus:

Olaniyan Julius specializes in Artificial Intelligence (AI), with a focus on Computer Vision, Natural Language Processing (NLP), and Machine Translation. His work primarily involves using deep learning techniques to create solutions for healthcare (e.g., cataract detection) and education (e.g., student performance evaluation). Julius is dedicated to developing hybrid AI models that combine traditional methods with transformative learning approaches. His research in audio signal denoising and speech-to-speech translation aims to enhance communication and multilingual interaction. He is passionate about designing AI-powered systems that can automate and optimize processes, improving outcomes in health diagnostics and online learning environments. Julius’s work on emotion detection in virtual classrooms and the integration of CNN models for speech emotion recognition represents a significant contribution to the AI field. His interdisciplinary research approach holds promise for real-world AI applications in various domains.

Publication Top Notes: 

  • “Utilizing an Attention-Based LSTM Model for Detecting Sarcasm and Irony in Social Media”
  • “Implementation of Audio Signals Denoising for Perfect Speech-to-Speech Translation Using Principal Component Analysis”
  • “Advancements in Accurate Speech Emotion Recognition Through the Integration of CNN-AM Model”
  • “Transformative Transparent Hybrid Deep Learning Framework for Accurate Cataract Detection”
  • “Parallel Attention Driven Model for Student Performance Evaluation”

 

 

 

 

Mr. Congcong Ren | AI Award | Best Researcher Award

Mr. Congcong Ren | AI Award | Best Researcher Award

Mr. Congcong Ren, Henan University of Science and Technology, China

Mr. Congcong Ren is a dedicated Master’s student in Vehicle and Traffic Engineering at Henan University of Science and Technology, with a Bachelor’s degree in Mechanical and Electrical Engineering from Henan Agricultural University. His expertise spans deep learning, algorithm development, and software testing, with practical experience in developing intelligent vehicles and defect detection systems. Mr. Ren has contributed to projects like an intelligent small car and wire rope defect detection, and he has gained hands-on experience during internships at Iflytek and Zeekr. His technical proficiency includes Python, PyTorch, and HIL test software, complemented by multiple school-level awards for innovation and entrepreneurship.

Professional Profile:

Orcid

Suitability for the Award

Mr. Congcong Ren is a highly suitable candidate for the Best Researcher Award based on the following points:

  1. Innovative Research:
    • His work on nighttime pedestrian detection and trajectory tracking addresses critical safety concerns in autonomous and intelligent vehicle systems. The use of fusion techniques combining visual and radar data showcases innovation in enhancing vehicle safety.
  2. Practical Experience:
    • His participation in significant projects like the intelligent small car and wire rope defect detection demonstrates his ability to apply theoretical knowledge to real-world challenges. These projects not only reflect technical skill but also his capability to collaborate effectively with industry partners.
  3. Academic and Professional Growth:
    • Mr. Ren’s ongoing master’s studies in artificial intelligence and traffic engineering, combined with his hands-on experience in internships at leading companies like Iflytek and Zeekr, underline his rapid professional development and adaptability in a fast-evolving field.
  4. Recognition and Skills:
    • His recognition through scholarships, awards, and publication of SCI papers highlights his academic excellence and contribution to the field. His proficiency in deep learning frameworks, coupled with practical software testing skills, positions him as a strong contender for research excellence.

Summary of Qualifications

  1. Educational Background:

    • Bachelor’s Degree in Mechanical and Electrical Engineering – Henan Agricultural University (2018-2022).
      • Major courses included Mechanical Design, Automobile Design, New Energy, and Traffic Engineering.
    • Master’s Degree (ongoing) in Vehicle and Traffic Engineering – Henan University of Science and Technology (2022-2025).
      • Major courses include Principles and Methods of Artificial Intelligence, Traffic Simulation Technology, System Control Theory, and Intelligent Network Technology.
  2. Project Experience:

    • Challenge Cup Project (2022-2023): Developed an intelligent small car with adjustable wheelbase and chassis height, integrating camera and millimeter-wave radar data for obstacle detection and avoidance.
    • Wire Rope Defect Detection Project (2023): Collaborated with Luoyang Wilrop Testing Technology Co., LTD. to improve YOLOv5s algorithm for defect detection in wire ropes using industrial camera images, meeting the project’s expected requirements.
  3. Internship Experience:

    • Iflytek (2023-2024): Tested large model voice assistant software, proficient in Android Studio and Adobe Audition, and used Python for batch pressure testing.
    • Zeekr (2024): Proficient in HIL test software (ECU-TEST, Canoe, INCA), familiar with software development processes and protocols (LIN/CAN), and involved in new energy vehicle controller testing.
  4. Technical Skills:

    • Proficient in Python, PyTorch, Matlab, Simulink, and various HIL test software.
    • Strong capabilities in deep learning, algorithm development, and software testing.
    • Recognized with school-level scholarships and awards, including the innovation and entrepreneurship competition fund.

Publication Top Notes:

1.  Study on Nighttime Pedestrian Trajectory-Tracking from the Perspective of Driving Blind Spots –  (2024).

2.  Nighttime Pedestrian Detection Based on a Fusion of Visual Information and Millimeter-Wave Radar –  (2023).

Both articles reflect his focus on advanced technologies in vehicle safety, particularly in challenging environments like nighttime driving.

Conclusion

Mr. Congcong Ren is an outstanding candidate for the Best Researcher Award, given his solid educational foundation, innovative research contributions in vehicle safety, and substantial practical experience in engineering and software testing. His ability to combine academic research with practical applications, particularly in the field of intelligent vehicle systems, makes him a deserving recipient of this award.

 

 

 

Dr. Kuanxin Shen | Artificial intelligent Awards | Best Researcher Award

Dr. Kuanxin Shen | Artificial intelligent Awards | Best Researcher Award

Dr. Kuanxin Shen , Shenyang University of Technology , China

Kuanxin Shen, a 27-year-old PhD candidate in Control Science and Engineering at Shenyang University of Technology, China, focuses his research on 3D Gaze Estimation using neural networks and deep learning. He holds a Bachelor’s degree earned in 2021 and a Master’s degree obtained in 2024. From 2022 to 2024, Kuanxin worked as an Algorithm Developer at Ningbo Chunjian Electronic Technology Co., Ltd., specializing in 3D intelligent perception in automotive cockpits. His research achievements include a Chinese utility model patent, several Chinese computer software copyrights, and three Chinese invention patents related to 3D eye tracking and gaze estimation. Kuanxin has also authored a book on industrial robot simulation and published a paper in the journal Sensors. He has been recognized with the third prize in the Henan Province College Students’ Robot Innovation Competition, a first-class academic scholarship, and the Excellent Thesis Award from Liaoning Province for his master’s thesis.

Professional Profile:

Orcid

🎓Educational Background:

Kuanxin Shen earned his Bachelor’s degree in 2021 and obtained his Master’s degree in 2024. He is currently pursuing a PhD in Control Science and Engineering at Shenyang University of Technology, China.

🏢Work Experience:

From 2022 to 2024, Kuanxin Shen worked as an Algorithm Developer at Ningbo Chunjian Electronic Technology Co., Ltd., specializing in 3D intelligent perception in automotive cockpits. His responsibilities included driver gaze detection, skeleton landmark detection, behavior detection (such as smoking and phone usage), and the detection of driver distraction and fatigue. His tasks encompassed image processing, 3D detection, data annotation, cleaning, augmentation, neural network training, and model testing.

🏆Awards and Recognitions:

During his undergraduate studies, Kuanxin Shen won the Third Prize in the 6th Henan Province College Students’ Robot Innovation Competition. In April 2024, he was awarded the First-Class Academic Scholarship during his master’s studies. In May 2024, his master’s thesis titled “Research on the Application of Driver Gaze Estimation Technology in DMS” received the Excellent Thesis Award from Liaoning Province, China

Publication Top Notes:

Title: Model-Based 3D Gaze Estimation Using a TOF Camera

  • Journal: Sensors