Arifur Rahman | Machine Learning | Best Researcher Award

Arifur Rahman | Machine Learning | Best Researcher Award

Mr. Arifur Rahman, NAGAD Digital Financial Service, Bangladesh

Arifur Rahman 🎓 is a passionate researcher and software engineer from Bangladesh 🇧🇩, specializing in Machine Learning 🤖, Deep Learning 🧠, NLP 📚, and Bioinformatics 🧬. A graduate of KUET in Computer Science and Engineering 💻, he has excelled in both academia and industry. Currently, he serves as a Full Stack Developer 🧑‍💻 at NAGAD Digital Financial Service, contributing to innovative supply chain projects. Arifur is also an active researcher with several IEEE and Elsevier publications 📝, and has earned recognition in programming contests 🏆. His dedication to applied AI and system development showcases a unique blend of technical and research excellence 🚀.

🌍 Professional Profile

Google Scholar

🎓 Education

  • 🎓 B.Sc. in Computer Science and Engineering, KUET (2018 – 2023)

    • 📊 CGPA: 3.35/4.00; Final Two Years CGPA: 3.73/4.00

  • 🏫 Noakhali Govt. College (2015 – 2017)

    • 🌟 GPA: 5.00/5.00 (Cumilla Board Scholarship Winner)

👨‍💼 Experience

  • 🧑‍💻 Software Engineer, NAGAD Digital Financial Service (Feb 2024 – Present)

    • 💼 Full Stack Developer in PRISM (Supply Chain Management) using Flutter, Java Spring Boot, PHP

  • 🔬 Research Engineer (NLP), AIMS Lab, United International University (Oct 2023 – Feb 2024)

    • 📚 Worked on Recommender Systems and published in IEEE Access

  • 👨‍💻 Software Engineer, Nazihar IT Solution Ltd. (May 2023 – Sep 2023)

    • 💻 Developed subroutines using Temenos Java Framework for banking solutions

🏆 Suitability for Best Researcher Award

Mr. Arifur Rahman is an exceptional candidate for the Best Researcher Award, demonstrating strong potential and proven excellence in research and innovation across emerging domains such as Machine Learning, Deep Learning, Natural Language Processing (NLP), Health Informatics, and Biomedical Engineering. His impactful research, hands-on development skills, and academic contributions distinguish him as a rising leader in computational science and applied AI.

🔹 Professional Development 

Arifur Rahman 🚀 is actively involved in both industry-driven software engineering and cutting-edge academic research 📖. His journey has been marked by continuous professional growth, serving in roles that merge development and innovation 💼. At NAGAD, he contributes as a Full Stack Developer 🌐, while his time at AIMS Lab sharpened his NLP and recommender system expertise 🧠. He has also contributed as a reviewer in IEEE conferences 📑, showcasing his engagement with the global research community. Arifur’s hands-on experience with technologies like Flutter, Java Spring Boot, ReactJS, and blockchain 🔗 highlights his dynamic skill set and commitment to excellence ⭐.

🔍 Research Focus

Arifur Rahman’s research focuses on a diverse range of AI-powered technologies 🧠, with core interests in Machine Learning, Deep Learning, and Natural Language Processing 🤖📚. His work explores real-world applications such as health informatics 🏥, bioinformatics 🧬, fake news detection, and blockchain security 🔐. Through his IEEE and Elsevier publications, he has addressed critical problems in diabetic retinopathy diagnosis, DNA sequence classification, and higher education recommendation systems 🎓. His blend of theoretical innovation and practical solutions ensures his research contributes to both scientific progress and societal impact 🌍.

🏅 Awards and Honors

  • 🎖️ Dean’s List Award at KUET for outstanding academic performance (2019–2020)

  • 🥇 Intra-KUET Programming Contest 2021 – 3rd Place 🧠💡

  • 🥈 Intra-KUET Programming Contest 2019 – 6th Place 🧠

  • 🥉 Divine IT Qualification Round – Rank 10 (Nov 2023) 💻

  • 🏆 TechnoNext Technical Coding Test 2023 (Fresher) – Rank 7 🔢

📊 Publication Top Notes

  1. Recommender system in academic choices of higher educationIEEE Access (2024) 📚5 🎓🤖
  2. Advancements in breast cancer diagnosis… with PCA, VIF6th Int. Conf. on Electrical Engineering and Info (2024) 📚2 🧬🩺📊
  3. Optimizing SMS Spam Detection… Voting Ensembles & Bi-LSTM5th Int. Conf. on Data Intelligence and Cognitive (2024) 📚1 📱📩🧠
  4. Cracking the Genetic Codes: DNA Sequence Classification…Int. Conf. on Advances in Computing, Communication (2024) 📚1 🧬🧪🧠
  5. Secure Land Purchasing using… Multi-Party Skyline Queries26th Int. Conf. on Computer and Info Tech (2023) 📚1 🌍🏠🔐
  6. Fake News Detection… Soft and Hard Voting EnsembleProcedia Computer Science (2025) 📚– 📰❌🗳️

Dr. Ryszard Ćwiertniak | Artificial Intelligence | Best Researcher Award

Dr. Ryszard Ćwiertniak | Artificial Intelligence | Best Researcher Award

Dr. Ryszard Ćwiertniak, Krakow University of Economics, Poland

Dr. Ryszard Ćwiertniak is an accomplished expert in project management, specializing in agile methodologies, Design Thinking, and AI-driven innovation. He holds a PhD in Management and Quality Sciences from the University of Economics in Krakow and has a strong academic and professional background in administration, management, and electrical engineering. With extensive experience in research and teaching, he has contributed to the fields of digital transformation, e-learning, and Industry 4.0. As an IBM Design Thinking mentor and Early Warning Europe ambassador, he helps businesses implement cutting-edge solutions. His work spans academia, consulting, and applied research in AI and business process optimization.

🌍 Professional Profile:

Orcid

Google Scholar

🏆 Suitability for Best Researcher Award 

Dr. Ryszard Ćwiertniak’s pioneering research in AI-driven project management, digital transformation, and innovation management makes him an outstanding candidate for the Best Researcher Award. His involvement in Erasmus+ projects, contributions to Industry 4.0, and mentorship in agile methodologies showcase his impact on academia and industry. His expertise in AI-based decision-making, personalized education, and digital business models has transformed organizational processes. With numerous peer-reviewed publications, a book, and a grant-winning project, his research advances the future of smart business ecosystems. His leadership in AI-powered business solutions and educational innovations solidifies his reputation as a top researcher in the field.

🎓 Education 

Dr. Ryszard Ćwiertniak earned his PhD in Management and Quality Sciences from the University of Economics in Krakow (2019), focusing on innovation management. He also holds a Master’s degree in Administration and Management from the University of Warsaw (1994). In addition, he has a background in electrical engineering, equipping him with a multidisciplinary approach to research. His academic journey reflects a deep commitment to combining management principles with technology, particularly in AI applications, e-learning, and agile business strategies. His education has laid the foundation for his expertise in digital transformation, business innovation, and advanced project management methodologies.

💼 Professional Experience 

Dr. Ćwiertniak currently serves as an academic teacher at Krakow University of Economics, specializing in technology and product ecology. Previously, he was the Rector’s Representative for Quality of Education and E-learning at the College of Economics and Computer Science (2020–2024). His role in the Early Warning Europe initiative highlights his expertise in digital business transformation. He also contributes to the Erasmus+ program, working on AI-powered educational solutions. As an IBM Design Thinking mentor, he facilitates agile project implementation. His professional engagements bridge academia and industry, driving innovation, AI adoption, and digital business strategies in various sectors.

🏅 Awards and Honors 

🔹 Early Warning Europe Ambassador (2021–Present) – Recognized for supporting digital business transformation.
🔹 Erasmus+ Research Grant Recipient – Contributed to AI-driven education models.
🔹 Ministerial Research Grant Winner (2021) – Awarded funding for advancing e-learning and digital education techniques.
🔹 IBM Design Thinking Mentor – Certified expert in guiding agile and innovative project execution.
🔹 Industry 4.0 & AI Innovation Contributor – Acknowledged for pioneering work in integrating AI with project management and digital marketing.
🔹 Invited Researcher at THWS Business School (2024) – Recognized for leadership in AI-based digital transformation.

His contributions to AI, project management, and education technology have earned him national and international acclaim.

🔬 Research Focus

Dr. Ćwiertniak’s research spans AI-driven project management, innovation strategies, digital transformation, and e-learning technologies. He explores Industry 4.0 applications, AI-based decision-making, and agile methodologies to optimize business processes. His focus on digital business models, social media analytics, and e-commerce strategies has redefined marketing and management practices. Through Design Thinking and AI integration, he enhances project execution efficiency. His research also covers personalized education using AI, ensuring smarter, data-driven learning environments. As an expert in AI-powered business solutions, he contributes to making organizations more adaptable and efficient in an era of rapid technological advancements.

📊 Publication Top Notes:

  1. Rola potencjału innowacyjnego w modelach biznesowych nowoczesnych organizacji – próba oceny

    • Citations: 11
    • Year: 2015
  2. Zarządzanie portfelem projektów w organizacji: Koncepcje i kierunki badań

    • Citations: 4
    • Year: 2018
  1. Addressing students’ perceived value with the virtual university concept

    • Citations: 3
    • Year: 2022
  2. Kształtowanie portfela projektów w zarządzaniu innowacjami

    • Citations: 2
    • Year: 2018
  1. The concept of project evaluation in the implementation of innovation

    • Citations: 1
    • Year: 2020

 

 

Dr. Tanushree Bhattacharjee | Emerging Technologies | Best Researcher Award

Dr. Tanushree Bhattacharjee | Emerging Technologies | Best Researcher Award

Dr. Tanushree Bhattacharjee, GRIDsentry Private Limited, India

Dr. Tanushree Bhattacharjee is a distinguished cybersecurity expert specializing in substation automation, OT security, and intrusion detection systems (IDS). With a Ph.D. in Electrical Engineering from Jamia Millia Islamia, she has over seven years of experience securing critical infrastructure. As Sr. R&D Manager at GRIDsentry Pvt. Ltd., Bengaluru, she leads cutting-edge research in forensic analysis, deep packet inspection, and AI-powered threat modeling. Dr. Bhattacharjee has played a vital role in national and international cybersecurity testbeds, contributing to the advancement of IEC 61850, power grid security, and microgrid protection. Her expertise in AI/ML-based anomaly detection ensures the resilience of modern power systems. 🔐⚡

🌍 Professional Profile:

Google Scholar

Orcid

Scopus

🏆 Suitability for the Best Researcher Award 

Dr. Tanushree Bhattacharjee is an outstanding candidate for the Best Researcher Award, given her pioneering work in substation automation security and digital transformation. She has made significant contributions to intrusion detection, vulnerability assessment, and OT security in power grids. Her leadership in developing IDS/IPS solutions, coupled with her expertise in AI-powered anomaly detection, positions her as a key innovator in cyber-physical security. With a strong background in threat modeling, forensic analysis, and protocol security, her research directly impacts critical infrastructure protection. Her proven ability to bridge AI with cybersecurity makes her a deserving nominee for this prestigious recognition. 🏆🔍

🎓 Education

Dr. Tanushree Bhattacharjee holds a Ph.D. in Electrical Engineering from Jamia Millia Islamia, New Delhi (2017-2022), where she focused on substation automation and microgrid protection. She completed her Master’s in Power Systems at the Indian Institute of Engineering Science & Technology, Shibpur (2012-2014). Her academic work involved IEC 61850 protocols, cybersecurity in digital substations, and AI-driven security frameworks. Through hands-on research in power system modeling, microgrid security, and forensic analysis, she has contributed to cybersecurity innovations in critical infrastructure. Her education has provided a robust foundation for her advancements in intrusion detection and digital protection strategies. 🎓⚡🔬

💼 Experience 

As Sr. R&D Manager at GRIDsentry Pvt. Ltd., Bengaluru, Dr. Bhattacharjee leads research on intrusion detection systems (IDS), AI-driven threat modeling, and forensic analysis. Previously, as a Product Manager, she specialized in deep packet inspection and anomaly detection. She also worked as a Power System Security Engineer, focusing on IPS/IDS development and OT cybersecurity. Her tenure at Jamia Millia Islamia involved substation automation, protocol security, and microgrid testing. With expertise in vulnerability assessments, access control, and live cybersecurity testing, she has significantly contributed to the security of modern power infrastructures. 🔒💡🚀

🏅 Awards & Honors 

Dr. Bhattacharjee has received multiple accolades for her contributions to power system cybersecurity. She has been recognized for her outstanding research in IDS and AI-driven security mechanisms. Her work on IEC 61850-based intrusion detection won Best Paper Awards at leading cybersecurity conferences. She has been acknowledged by cybersecurity organizations for her role in developing AI-based threat detection tools. Additionally, she has contributed to national security projects, earning commendation from government agencies and industry leaders. Her expertise in forensic analysis, digital substation security, and OT cybersecurity has positioned her as a trailblazer in the field. 🏆🔍⚡

🔬 Research Focus

Dr. Bhattacharjee’s research integrates emerging technologies with cybersecurity, focusing on power system protection, IEC 61850 protocols, and digital substation automation. Her expertise includes intrusion detection, AI-based anomaly detection, and forensic security analysis. She explores cyber-physical system security, ensuring resilience against DDoS, MITM, and replay attacks. Her work in deep learning for security event detection enhances smart grid protection. She also specializes in protocol security, AI-driven attack mitigation, and operational technology (OT) cybersecurity. Through machine learning, threat modeling, and real-time testing, her research aims to fortify modern power infrastructures against evolving cyber threats. 🛰️🔐⚙️

📖 Publication Top Notes

  1. Hardware Development and Interoperability Testing of a Multivendor-IEC-61850-Based Digital Substation
    • Citations: 11
    • Year: 2022
  2. Planning of Renewable DGs for Distribution Network Considering Load Model: A Multi-Objective Approach
    • Citations: 9
    • Year: 2014
  1. Designing a Controller Circuit for Three-Phase Inverter in PV Application
    • Citations: 6
    • Year: 2018
  2. Digital Substations with the IEC 61850 Standard
    • Citations: 3
    • Year: 2021
  3. Power Quality Improvement of Grid Integrated Distributed Energy Resource Inverter
    • Citations: 2
    • Year: 2021

 

Dr. Yingbin Wang | Artificial Intelligence | Best Researcher Award

Dr. Yingbin Wang | Artificial Intelligence | Best Researcher Award

Dr. Yingbin Wang, Xi’an Institute of Space Radio Technolog, China

Dr. Yingbin Wang is a leading researcher in space microwave communication, detection, and AI-driven signal processing. He earned his Ph.D. in Electronic Science and Technology from Xidian University in 2022 and currently serves as a Senior Engineer at the National Key Laboratory of Science and Technology on Space Microwave at the Xi’an Institute of Space Radio Technology. His research spans Integrated Sensing and Communication (ISAC), deep learning, and anti-jamming satellite systems. With over ten high-impact publications and contributions to national-level R&D projects, Dr. Wang is shaping the future of space-based communication and intelligent sensing. 🚀📡

🌍 Professional Profile:

Google Scholar

🏆 Suitability for the Best Researcher Award

Dr. Yingbin Wang is a highly qualified candidate for the Best Researcher Award, given his significant contributions to space microwave communication and AI-powered signal processing. His expertise in satellite-terrestrial integration, space-based radar target detection, and anti-jamming satellite systems plays a crucial role in advancing global space technology. With publications in top-tier IEEE journals, participation in national R&D projects, and contributions to cutting-edge ISAC applications, Dr. Wang is at the forefront of next-generation communication research. His work in AI-driven remote sensing is revolutionizing the field, making him a distinguished and deserving nominee. 🏆🚀

🎓 Education

Dr. Yingbin Wang pursued his entire higher education at Xidian University, China, a prestigious institution in electronic engineering and space communication. He obtained his Ph.D. in Electronic Science and Technology in June 2022, focusing on advanced space microwave systems and AI-enhanced signal processing. His doctoral research contributed to improving satellite communication resilience, radar detection, and deep learning applications in space technologies. Throughout his academic journey, he combined hardware engineering with AI-driven software models, enabling breakthroughs in integrated satellite-terrestrial communication. His strong foundation in electromagnetic waves, remote sensing, and computational intelligence defines his research excellence. 🎓📡🔬

💼 Experience 

Dr. Yingbin Wang is a Senior Engineer at the National Key Laboratory of Science and Technology on Space Microwave, Xi’an Institute of Space Radio Technology. His role involves leading research in space microwave communication, detection, and AI-driven signal optimization. He has contributed to major national R&D projects, including space-based radar target detection, anti-jamming satellite communication, and integrated sensing for satellite-terrestrial networks. His work on AI-based signal processing and deep learning models has significantly enhanced real-time space communication efficiency. His expertise in high-frequency electromagnetic applications and AI-powered satellite technology is instrumental in shaping the future of space communications. 🚀📶

🏅 Awards & Honors 

Dr. Yingbin Wang has received multiple recognitions for his contributions to space communication and AI-driven signal processing. His research in anti-jamming satellite networks has been awarded national-level research funding. He has received Best Paper Awards at leading IEEE conferences on signal processing and remote sensing. Additionally, his contributions to integrated satellite-terrestrial communication have been recognized by the National Science and Technology Innovation Program. As a reviewer for top IEEE journals, he actively contributes to the scientific community. His pioneering work in AI-enhanced space sensing continues to push the boundaries of satellite communication technologies. 🏆📡

🔬 Research Focus 

Dr. Yingbin Wang’s research spans Artificial Intelligence, communication, deep learning, and signal processing, with a strong emphasis on space microwave communication and detection. His work explores AI-driven radar target detection, anti-jamming satellite communication, and integrated sensing and communication (ISAC) systems. He develops machine learning models for real-time adaptive signal processing, enhancing satellite-terrestrial connectivity. His studies in neural network-driven space communication systems optimize data transmission efficiency in complex space environments. His research is critical for next-generation deep-space exploration, smart communication networks, and high-performance microwave technology, ensuring global connectivity and security in aerospace applications. 🚀📡🛰️

📖 Publication Top Notes

  1. SPB-Net: A Deep Network for SAR Imaging and Despeckling with Downsampled Data
    • Journal: IEEE Transactions on Geoscience and Remote Sensing
    • Publication Year: 2020
    • Citations: 27
  2. Lq-SPB-Net: A Real-Time Deep Network for SAR Imaging and Despeckling
    • Journal: IEEE Transactions on Geoscience and Remote Sensing
    • Publication Year: 2021
    • Citations: 8
  1. Multi-Scale and Single-Scale Fully Convolutional Networks for Sound Event Detection
    • Journal: Neurocomputing
    • Publication Year: 2021
    • Citations: 18
  2. MSFF-Net: Multi-Scale Feature Fusing Networks with Dilated Mixed Convolution and Cascaded Parallel Framework for Sound Event Detection
    • Journal: Digital Signal Processing
    • Publication Year: 2022
    • Citations: 12
  1. A Convex Optimization Algorithm for Compressed Sensing in a Complex Domain: The Complex-Valued Split Bregman Method
    • Journal: Sensors
    • Publication Year: 2019
    • Citations: 13

 

Prof. Dr. Xin Wang | Distributed AI | Best Researcher Award

Prof. Dr. Xin Wang | Distributed AI | Best Researcher Award

Prof. Dr. Xin Wang, Qilu University of Technology, China

Prof. Dr. Xin Wang is a distinguished scholar in Distributed AI and Federated Learning, currently serving as a Professor at Shandong Computer Science Center, Qilu University of Technology. With a Ph.D. in Control Science and Engineering from Zhejiang University, he has contributed significantly to AI Security, Privacy, and LLM Security. Dr. Wang has led multiple national research projects and received prestigious honors, including the Taishan Scholars Award and the Shandong Provincial Science and Technology Progress Award. His work integrates AI with secure computing, enhancing privacy protection and optimization in collaborative learning systems.

🌍 Professional Profile:

Google Scholar

🏆 Suitability for Award 

Dr. Xin Wang’s outstanding contributions to Distributed AI, Federated Learning, and AI Security make him a strong candidate for the Best Researcher Award. As a leader in AI-driven security frameworks, he has spearheaded national-level projects focusing on privacy-preserving AI and secure learning models. His research bridges theory with practical applications, enhancing security in multi-agent and industrial IoT systems. Recognized for his high-impact publications and award-winning research, Dr. Wang’s innovations in cryptographic function identification and UAV data collection optimization demonstrate exceptional originality and real-world relevance, solidifying his place as a leader in computational intelligence and AI security.

🎓 Education 

  • Ph.D. in Control Science and Engineering (2015-2020) – Zhejiang University, supervised by Prof. Peng Cheng & Prof. Jiming Chen, specializing in AI Security and Distributed Intelligence.
  • Visiting Scholar in Information Security (2018-2019) – Tokyo Institute of Technology, mentored by Prof. Hideaki Ishii, focusing on cryptographic vulnerabilities and federated learning security.

His multidisciplinary training across AI, security, and automation has positioned him at the forefront of cutting-edge computational research.

💼 Experience 

  • Professor (2024–Present) – Shandong Computer Science Center, Qilu University of Technology.
  • Associate Professor (2020–2024) – Shandong Computer Science Center, leading research on privacy protection in collaborative AI.
  • Project PI in National Natural Science Foundation of China (2025-2027) – Developing privacy-preserving defense mechanisms for federated learning.
  • Project PI in National Key Research and Development Program (2021-2024) – Developing AI-driven meta-services for cloud-based industrial manufacturing.
  • Visiting Scholar (2018-2019) – Tokyo Institute of Technology, conducting security research on cryptographic vulnerabilities in multi-agent IoT systems.

🏅 Awards and Honors 

  • Taishan Scholars Award (2024) 🏅 – Recognized for research excellence in AI security and distributed systems.
  • Leader of Youth Innovation Team (2022) 🚀 – Acknowledged for driving innovation in Shandong Higher Education Institutions.
  • Second Prize, Shandong Provincial Science and Technology Progress Award (2022) 🏆 – Contributions to federated learning and privacy-preserving AI.
  • Best Paper Award, CCSICC’21 📄 – Vulnerability Analysis for IoT Devices in Multi-Agent Systems.
  • Best Paper Award, ICAUS’24 ✈️ – Optimized Data Collection for UAVs in Industrial IoT Environments.

🔬 Research Focus 

Dr. Wang specializes in Distributed AI, Federated Learning, and AI Security & Privacy. His research integrates cryptographic techniques, optimization algorithms, and adversarial defenses to improve the security of collaborative learning models. He has pioneered LLM security frameworks to safeguard against data leakage and adversarial attacks. His work extends into privacy-preserving AI for multi-agent IoT systems and UAV data collection efficiency. Through national projects, he has developed secure meta-services for cloud computing, advancing the field of intelligent automation and resilient AI architectures for real-world deployment in cyber-physical systems and industrial environments.

📊 Publication Top notes:

  • Title: Privacy-Preserving Distributed Machine Learning via Local Randomization and ADMM Perturbation
    • Year: 2020
    • Citations: 61
  • Title: Privacy-Preserving Collaborative Computing: Heterogeneous Privacy Guarantee and Efficient Incentive Mechanism
    • Year: 2018
    • Citations: 49
  • Title: Differentially Private Maximum Consensus: Design, Analysis and Impossibility Result
    • Year: 2018
    • Citations: 26
  • Title: Dynamic Privacy-Aware Collaborative Schemes for Average Computation: A Multi-Time Reporting Case
    • Year: 2021
    • Citations: 18
  • Title: Leveraging UAV-RIS Reflects to Improve the Security Performance of Wireless Network Systems
    • Year: 2023
    • Citations: 17

 

Prof. Ching Yee Suen | Artificial Intelligence | Best Researcher Award

Prof. Ching Yee Suen | Artificial Intelligence | Best Researcher Award

Prof. Ching Yee Suen, Concordia University, Canada

Prof. Ching Yee Suen is a globally recognized expert in Pattern Recognition, AI, and Document Analysis. As the Founding Director and Co-Director of CENPARMI at Concordia University, he has shaped advancements in handwriting recognition, multiple classifiers, and font analysis. A Fellow of IEEE, IAPR, and the Royal Society of Canada, he has mentored 120+ graduate students and 100 visiting scientists. With 550+ research papers, 16 books, and an h-index of 74, his contributions are widely cited. His innovations power millions of devices worldwide. He has led $20M+ research projects, collaborated with global industries, and serves as an editor for top-tier journals.

🌍 Professional Profile:

Google Scholar

🏆 Suitability for Best Researcher Award 

Prof. Suen is an exceptional candidate for the Best Researcher Award due to his pioneering contributions in AI, pattern recognition, and handwriting analysis. His research has real-world impact, with millions of users benefiting from his handwriting recognition algorithms. He has received top international awards, including the King-Sun Fu Prize (2021) and ICDAR Award (2005). As a leading AI researcher, he has secured $20M+ in funding, supervised over 120 Ph.D. and master’s students, and led groundbreaking industrial collaborations. His global influence, leadership in AI, and outstanding research output make him a worthy recipient of this prestigious honor.

🎓 Education 

Prof. Ching Yee Suen holds a Ph.D. from the University of British Columbia (UBC), Vancouver, and a Master’s degree from the University of Hong Kong. His academic journey has been marked by a deep focus on Artificial Intelligence, Pattern Recognition, and Computational Vision. His early research laid the foundation for his groundbreaking work in handwriting recognition, document analysis, and AI-powered classification systems. He has spent sabbatical leaves at MIT, McGill University, Ecole Polytechnique, and IBM, further expanding his expertise. His academic credentials have established him as a leading scholar in AI and pattern recognition on a global scale.

💼 Experience 

With a career spanning 50+ years, Prof. Suen has held key leadership roles at Concordia University, serving as Chairman of Computer Science, Associate Dean (Research), and Concordia Chair in AI & Pattern Recognition. He is the Founding Director and Co-Director of CENPARMI, where he has driven cutting-edge research. He has supervised 120+ graduate students and collaborated with top institutions worldwide. As a consultant to Microsoft, Xerox, Canada Post, and the US Congress, his work has had real-world impact. His editorial leadership in top AI journals and conference organization further cements his global influence in the research community.

🏅 Awards and Honors

Prof. Suen’s excellence is recognized globally, earning him top honors in AI and pattern recognition. He received the King-Sun Fu Prize (2021) 🏆, the ICDAR Award (2005) 🎖️, and the Elsevier Distinguished Editorial Award (2016)📜. His Concordia Lifetime Research Achievement Award (2008) and Teaching Excellence Award (1995) 🎓 highlight his impact in academia. Internationally, he was honored with the Gold Medal from the University of Bari, Italy (2012) 🥇. As a Fellow of IEEE, IAPR, and the Royal Society of Canada, his contributions to AI, document analysis, and handwriting recognition are celebrated at the highest levels.

🔬 Research Focus 

Prof. Suen specializes in Pattern Recognition, Artificial Intelligence, and Document Analysis. His innovations in handwriting recognition, fake coin detection, license plate recognition, and multi-classifier systems have transformed industry applications. His research integrates AI, deep learning, and image processing to solve complex problems in computer vision, natural language processing, and fraud detection. His high-impact contributions are widely used in mobile devices, banking security, and postal services. His multi-disciplinary approach in AI has led to real-world solutions adopted by Microsoft, Bell Canada, Canada Post, and global tech firms, making him a pioneer in intelligent pattern analysis.

📊 Publication Top notes:

  • Title: Developing Knowledge Management Metrics for Measuring Intellectual Capital
    • Year: 2000
    • Citations: 442
  • Title: Modified Hebbian Learning for Curve and Surface Fitting
    • Year: 1992
    • Citations: 322
  • Title: N-Gram Statistics for Natural Language Understanding and Text Processing
    • Year: 1979
    • Citations: 315
  • Title: Analysis and Design of a Decision Tree Based on Entropy Reduction and Its Application to Large Character Set Recognition
    • Year: 1984
    • Citations: 176
  • Title: Large Tree Classifier with Heuristic Search and Global Training
    • Year: 1987
    • Citations: 102

 

 

Dr. Vamsi Inturi | Machine Learning | Best Researcher Award

Dr. Vamsi Inturi | Machine Learning | Best Researcher Award

Dr. Vamsi Inturi, Chaitanya Bharathi Institute of Technology, India

Dr. Vamsi Inturi is an accomplished researcher and academic specializing in Mechanical Engineering, with expertise in fault diagnosis, health monitoring, and digital twin technologies. He earned his Ph.D. from BITS Pilani, focusing on adaptive condition monitoring for wind turbine gearboxes. With experience spanning postdoctoral research at Trinity College Dublin and academic roles in India, he has made significant contributions to machine learning applications in engineering. He has received prestigious awards, including the Best Paper Award at the 43rd International JVE Conference. His research integrates AI and signal processing to enhance predictive maintenance and mechanical system reliability.

Professional Profile:

Google Scholar

Orcid

Scopus

🏆 Suitability for Award 

Dr. Vamsi Inturi is an outstanding candidate for the Best Researcher Award, given his pioneering work in mechanical fault diagnosis, machine learning, and predictive maintenance. His research significantly impacts renewable energy systems, particularly wind turbines, optimizing efficiency and reducing downtime. Recognized with international travel grants, research fellowships, and best paper awards, he has demonstrated academic excellence and innovation. His work in digital twins and signal processing has been published in high-impact journals, reinforcing his status as a leader in mechanical engineering research. His commitment to advancing engineering solutions makes him highly deserving of this prestigious recognition.

🎓 Education

Dr. Vamsi Inturi holds a Ph.D. in Mechanical Engineering from BITS Pilani (2016-2020), where he developed an adaptive condition monitoring scheme for wind turbine gearboxes under the supervision of Prof. Sabareesh G R and Prof. Pavan Kumar P. He earned his M.Tech in Machine Design from JNTU Kakinada (2012-2014), focusing on modeling process parameters in milling aluminum composites. His academic journey began with a Bachelor’s in Mechanical Engineering, followed by extensive research in fault diagnosis and mathematical modeling. His interdisciplinary expertise bridges mechanical systems, AI-driven analytics, and sustainable energy solutions, shaping advancements in mechanical diagnostics.

👨‍🏫 Experience 

Dr. Vamsi Inturi has a diverse academic and research career. He is currently an Assistant Professor at CBIT(A), Hyderabad, specializing in engineering drawing, robotics, and mechanical systems. Previously, he was a Postdoctoral Researcher at Trinity College Dublin, managing the REMOTE-WIND project. He also served as a Research Scholar at BITS Hyderabad, working on mechanical vibrations and fault diagnosis. His teaching experience includes faculty positions at PACEITS and QISIT, mentoring students in mechanical design and computational modeling. With extensive research output in AI-driven diagnostics, he plays a crucial role in advancing predictive maintenance strategies.

🏅 Awards and Honors

Dr. Vamsi Inturi has received multiple accolades for his research excellence. He was awarded the Best Paper Award at the 43rd International JVE Conference (2019) and recognized for outstanding Ph.D. performance (2017-18). As a CSIR Senior Research Fellow (2019-20), he contributed to groundbreaking studies in mechanical diagnostics. He also secured a CSIR International Travel Grant (2019) to present his research globally. Additionally, he was elected a campus-level senate member for Ph.D. programs (2018-20). His expertise has made him a sought-after speaker and session co-chair at international mechanical engineering conferences.

🔍 Research Focus 

Dr. Vamsi Inturi’s research centers on health monitoring, fault diagnosis, and AI-driven mechanical analytics. His work integrates machine learning, signal processing, and digital twin technologies to enhance predictive maintenance in mechanical systems, particularly wind turbines. He specializes in mathematical modeling and deep learning applications for fault detection, helping industries reduce operational risks. His studies on adaptive condition monitoring schemes for gearboxes have led to innovative diagnostic frameworks. His interdisciplinary approach merges mechanical engineering with computational intelligence, making significant contributions to sustainable energy and industrial automation.

📚 Publication Top Notes:

  • Title: Comparison of Condition Monitoring Techniques in Assessing Fault Severity for a Wind Turbine Gearbox Under Non-Stationary Loading
    • Volume: 124
    • Citations: 102
  • Title: Evaluation of Surface Roughness in Incremental Forming Using Image Processing-Based Methods
    • Year: 2020
    • Citations: 68
  • Title: Integrated Condition Monitoring Scheme for Bearing Fault Diagnosis of a Wind Turbine Gearbox
    • Year: 2019
    • Citations: 63
  • Title: Comprehensive Fault Diagnostics of Wind Turbine Gearbox Through Adaptive Condition Monitoring Scheme
    • Year: 2021
    • Citations: 45
  • Title: Optimal Sensor Placement for Identifying Multi-Component Failures in a Wind Turbine Gearbox Using Integrated Condition Monitoring Scheme
    • Year: 2022
    • Citations: 30

 

Dr. Mani shekhar Gupta | AI in Network System | Excellence in Research

Dr. Mani shekhar Gupta | AI in Network System | Excellence in Research Award

Dr. Mani shekhar Gupta | Adani University, Ahmedabad | India

📚 Dr. Mani Shekhar Gupta is an Assistant Professor at Adani University, Ahmedabad, with a Ph.D. in Electronics and Communication Engineering from NIT Hamirpur. 🚀 His research spans cognitive radio networks, vehicular networks, resource allocation, AI, and next-gen wireless technologies. 📡 With over 11 years of academic and research experience, he has contributed significantly through projects at IIT Delhi and NIT Hamirpur. 👨‍🏫 A passionate educator and innovator, Dr. Gupta excels in machine learning, green networks, and intelligent transportation systems. 💡 His dynamic approach blends technical expertise with a love for teaching and discovery. 🌟

Professional Profile:

Google Scholar

Suitability for the Excellence in Research Award

Dr. Mani Shekhar Gupta is highly suitable for the Excellence in Research Award due to his extensive academic background, impactful research contributions, and innovative approaches in the fields of cognitive radio networks, vehicular networks, resource allocation, artificial intelligence, and next-generation wireless technologies. His career, spanning over 11 years, reflects a deep commitment to advancing technological frontiers and fostering academic excellence.

Education 📖 & Experience 👨‍💼 

  • 📜 Ph.D. in Electronics & Communication Engineering, NIT Hamirpur (2017–2021) – CGPI 9.5
  • 🎯 M.Tech. in Electronics & Communication Engineering, NIT Hamirpur (2009–2011) – CGPI 8.49
  • 🏅 B.Tech. in Electronics & Communication, UPTU, Lucknow (2005–2009) – 74.42%
  • 👨‍🏫 Assistant Professor, Adani University (2022–Present)
  • 🔬 Postdoctoral Researcher, IIT Delhi (2021–2022)
  • 🎓 Ph.D. Research Scholar, NIT Hamirpur (2017–2021)
  • 👨‍💼 Assistant Professor, PSIT Kanpur (2011–2017)

Professional Development 

🌐 Dr. Gupta actively engages in continuous professional growth through memberships in global organizations like IEEE 📡, EAI 🇪🇺, IACSIT 🇸🇬, IAENG 🇭🇰, and IAAM 🌍. His participation spans technical communities focusing on e-Government, IoT 🌐, Smart Cities 🏙️, and Autonomous Driving 🚗. He’s also a member of humanitarian groups like IEEE SIGHT 🤝. Through conferences, workshops, and collaborative projects, Dr. Gupta refines his expertise in wireless networks, machine learning 🤖, and green technologies 🌱, ensuring he stays at the forefront of innovation and academic excellence. 🚀

Research Focus 

🔍 Dr. Gupta’s research focuses on cognitive radio networks 📡, vehicular networks 🚗, and resource allocation strategies for next-generation wireless systems 📶. His work integrates AI 🤖 and machine learning to enhance spectrum management, optimize network efficiency, and support intelligent transportation systems 🚦. He explores green network technologies 🌱, aiming to reduce environmental impact while improving connectivity. His contributions to 5G and beyond involve proactive spectrum sharing, game theory applications 🎯, and cooperative uplink-downlink strategies, making his research pivotal for smart cities 🏙️ and sustainable communication infrastructures. 🌍

Awards & Honors 🏆 

(No specific awards or honors mentioned in the provided details. If you have any, please share for accurate updates.)

  • 🏅 IEEE Membership & Active Roles in Multiple Societies
  • 🌟 Recognized Contributor in DST-SERB & BASF Research Projects
  • 📜 International Memberships: IACSIT 🇸🇬, IAENG 🇭🇰, IAAM 🌍

Publication Top Notes:

📡 Progression on Spectrum Sensing for Cognitive Radio Networks: A Survey, Classification, Challenges, and Future Research Issues  📑 Cited by 164
🌿 Energy Efficient Transmission Trends Towards Future Green Cognitive Radio Networks (5G): Progress, Taxonomy, and Open Challenges 📑 Cited by 114
🚗 Application Aware Networks’ Resource Selection Decision Making Technique Using Group Mobility in Vehicular Cognitive Radio Networks  📑 Cited by 32
📶 A Survey on NOMA Techniques for 5G Scenario  📑 Cited by 24
🔀 Seamless Vertical Handover for Efficient Mobility Management in Cooperative Heterogeneous Networks 📑 Cited by 20

 

 

 

Dr. Punitha A | Machine Learning | Women Researcher Award

Dr. Punitha A | Machine Learning | Women Researcher Award

Dr. Punitha A | K Ramakrishnan College of Technology | India

Dr. A. Punitha is a distinguished professor with 20 years of experience in the Electronics and Communication Engineering field. She is currently a faculty member at M.A.M School of Engineering, Trichy, where she also serves in leadership roles like NBA Coordinator, Head of the Department, and R&D In-Charge. Dr. Punitha is highly involved in research, especially in AI, IoT, and machine learning applications, and has received multiple research grants. Her work includes real-time monitoring systems, intrusion detection, and bio mask development. She is a prolific academic, with numerous publications and active contributions to conferences 📚👩‍🏫🤖.

Professional Profile:

SCOPUS

Suitability for Women Researcher Award

Dr. A. Punitha is highly suitable for the Women Researcher Award due to her extensive experience, leadership in academia, and significant contributions to the fields of Electronics and Communication Engineering, particularly in cutting-edge technologies such as AI, IoT, and machine learning.Dr. Punitha’s research focuses on innovative and impactful fields such as AI, IoT, and machine learning applications. She has worked on various cutting-edge projects, including real-time monitoring systems, intrusion detection systems, and bio mask development, which directly address real-world challenges. Her work in these domains exemplifies her contribution to advancing technology and creating solutions that have the potential to significantly benefit society.

Education and Experience

  • Ph.D. in Electronics and Communication Engineering 🎓
  • M.E. in Electronics and Communication Engineering 🎓
  • Total Experience: 20 Years
  • NBA Coordinator & Head of Department of ECE 🏫
  • R&D In-Charge, MAMSE 🧪
  • IIC Convener & Innovation Ambassador 🚀
  • International Conference Coordinator 🌍
  • Japanese Language Training Coordinator 🇯🇵
  • Coordinated AICTE and Tamil Nadu Science funding projects 💸

Professional Development

Dr. A. Punitha is an accomplished academic who actively contributes to the growth of her department and the institution. She has played a significant role in organizing faculty development programs, seminars, and workshops. Her involvement in innovation and research is evident through her leadership in receiving multiple grants, such as the Rs. 3.5 lakh AICTE ATAL fund and Tamil Nadu Science and Technology funds. Dr. Punitha has also acted as a resource person in webinars and conferences, discussing vital topics such as NEP 2020 and OBE. Her dedication to improving teaching quality and research at MAMSE remains evident 🌱📚💡.

Research Focus

Dr. A. Punitha’s research is centered around leveraging advanced technologies like AI, IoT, and machine learning to solve real-world problems. Her work explores areas such as intrusion detection in wireless sensor networks, brain tumor detection using CNN, and real-time monitoring systems like drowsy driving detection. She is also focusing on developing bio masks for sanitization and enhancing food processing in Industry 5.0 using AI. Dr. Punitha aims to create innovative solutions that contribute to both the academic and practical fields of technology 🌐🤖🔬.

Awards and Honors

  • Received Rs. 3.5 Lakh from AICTE ATAL for Faculty Development Program (2024) 💰
  • Funded Rs. 2.8 Lakh by Tamil Nadu Science and Technology for “Bio Mask Project” 💡
  • Awarded Rs. 20,000 for “Intra Project Expo 2021” by Tamil Nadu Science and Technology 🎉
  • Webinar Resource Person for “NEP 2020” and “OBE” at MAMSE 🎤
  • Co-principal Investigator for AICTE and Tamil Nadu Science-funded projects 🏆
  • Acted as Organizing Committee Member for National Conference with CSIR funding (Rs. 50,000) 🗣️

Publication Top notes:

  • “Dynamically stabilized recurrent neural network optimized with intensified sand cat swarm optimization for intrusion detection in wireless sensor network”
  • “Enhancing the Food Processing in Industry 5.0 Based on Artificial Intelligence”– Cited by: 1️⃣
  • “REAL TIME MONITORING AND DETECTION OF DROWSY DRIVING”
  • “Smart Method for Tollgate Billing System Using RSSI”  – Cited by: 3️⃣
  • “Privacy preservation and authentication on secure geographical routing in VANET” – Cited by: 6️⃣
  • “Secure group authentication technique for VANET” – Cited by: 5️⃣
  • “Location verification technique for secure geographical routing in VANET” – Cited by: 2️⃣

 

 

 

Mr. Ashok Yadav | Computational Intelligence | Best Researcher Award

Mr. Ashok Yadav | Computational Intelligence | Best Researcher Award

Mr. Ashok Yadav, Indian Institute of Information Technology Allahabad, India

Mr. Ashok Yadav is a distinguished researcher in the field of cybersecurity, natural language processing (NLP), social network analysis, and offensive content detection. He holds a Ph.D. from the Indian Institute of Information Technology Allahabad, where his thesis focused on detecting and countering offensive content. Mr. Yadav also completed his M.Tech. in Cyber Security from AKTU Lucknow, specializing in intrusion detection and prevention in wireless sensor networks. He holds a B.Tech. in Computer Science from the School of Management Sciences, Lucknow. With a deep interest in cybercrime, OSINT (Open Source Intelligence), and hate speech, Mr. Yadav has contributed significantly to the academic and practical understanding of these areas. His work spans across multiple domains, including deep learning, computational intelligence, and social media networks. Mr. Yadav is actively involved in academic conferences and serves as a reviewer for several prestigious journals. 🖥️🔐📚

Professional Profile

Google Scholar

Suitability for Award 

Mr. Ashok Yadav is highly suitable for the Research for Best Researcher Award due to his outstanding contributions to cybersecurity, NLP, and social network analysis. His research on offensive content detection, tracking, and counter-generation has had a significant impact on mitigating cyber threats and addressing harmful speech on digital platforms. Mr. Yadav’s deep understanding of emerging technologies such as deep learning, OSINT, and computational intelligence positions him as a leader in his field. His active participation in global conferences like the ACL and his role as a reviewer for notable journals further highlight his academic influence. Mr. Yadav’s commitment to advancing cybersecurity and his contributions to combating hate speech and cybercrime make him a deserving candidate for this prestigious award. His research not only addresses current challenges in cybersecurity but also provides innovative solutions for the future. 🏆💻🌍

Education

Mr. Ashok Yadav has a strong academic background, with a focus on cybersecurity, NLP, and social network analysis. He completed his Ph.D. in Computer Science from the Indian Institute of Information Technology Allahabad in 2021, specializing in offensive content detection and tracking. His doctoral thesis, titled Offensive Content Detection, Tracking, and Counter Generation, reflects his expertise in combating harmful speech in digital environments. Prior to his Ph.D., Mr. Yadav earned an M.Tech. in Cyber Security from AKTU Lucknow, where his research on intrusion detection and prevention in wireless sensor networks earned recognition. He also holds a B.Tech. in Computer Science from the School of Management Sciences, Lucknow. Mr. Yadav’s academic journey is complemented by certifications from the SANS Institute, including training in Cyber Threat Intelligence, Digital Forensics, and Open-Source Intelligence. His educational background has equipped him with a deep understanding of both theoretical and practical aspects of cybersecurity. 🎓💡🔐

Experience 

Mr. Ashok Yadav has extensive experience in both academia and industry, particularly in the fields of cybersecurity, NLP, and social network analysis. He is currently pursuing advanced research in offensive content detection, hate speech, and cybercrime. His professional journey includes serving as a reviewer for several prestigious journals, such as the Cloud Computing and Data Science Journal and the International Research Journal of Multidisciplinary Technovation. Mr. Yadav has also been actively involved in international conferences, including the 62nd Annual Meeting of the Association for Computational Linguistics (ACL 2024), where he contributed to the main track and demonstration track. He has attended various SANS Institute training summits, enhancing his expertise in Cyber Threat Intelligence, Digital Forensics, and Open-Source Intelligence. Mr. Yadav’s practical experience in cybersecurity and his contributions to the academic community make him a valuable asset in his field. 💼🌐🔍

Awards and Honors

Mr. Ashok Yadav has received several prestigious certifications and accolades for his contributions to cybersecurity and digital forensics. He was awarded the Gate Qualification in Computer Science and Information Technology in 2019, demonstrating his expertise in the field. In 2020, he qualified for the UGC-Net Assistant Professor in Computer Science and Application. Mr. Yadav’s active participation in high-profile conferences such as the 62nd Annual Meeting of the Association for Computational Linguistics (ACL 2024), where he was an attendee, further highlights his academic recognition. He has also been recognized for his contributions as a reviewer for prominent journals, including the Cloud Computing and Data Science Journal and the International Research Journal of Multidisciplinary Technovation. Additionally, Mr. Yadav has earned multiple certifications from the SANS Institute in Cyber Threat Intelligence, Digital Forensics, and Open-Source Intelligence, further solidifying his standing in the cybersecurity community. 🏅🎖️🌟

Research Focus 

Mr. Ashok Yadav’s research focus lies at the intersection of cybersecurity, natural language processing (NLP), social network analysis, and offensive content detection. His work on detecting and countering hate speech and offensive content on digital platforms addresses a growing concern in today’s internet-driven society. His Ph.D. research on Offensive Content Detection, Tracking, and Counter Generation has contributed significantly to the development of automated systems that can identify and mitigate harmful speech online. Mr. Yadav is also deeply involved in exploring the use of deep learning, computational intelligence, and OSINT (Open-Source Intelligence) in the detection of cyber threats and cybercrime. His research aims to create innovative solutions for tackling the challenges posed by cyberattacks, misinformation, and online hate speech. Through his work, Mr. Yadav seeks to enhance the security and integrity of online spaces, making them safer for users. 🔐💻🧠

Publication Top Notes

  • Title: Open-source Intelligence: A Comprehensive Review of the Current State, Applications, and Future Perspectives in Cyber Security
    • Cited by: 32
    • Year: 2023
  • Title: Intrusion Detection and Prevention Using RNN in WSN
    • Cited by: 12
    • Year: 2022
  • Title: Detecting SQL Injection Attack Using Natural Language Processing
    • Cited by: 8
    • Year: 2022
  • Title: Detecting Malware in Android Applications by Using Androguard Tool and XGBoost Algorithm
    • Cited by: 2
    • Year: 2022
  • Title: HateFusion: Harnessing Attention-Based Techniques for Enhanced Filtering and Detection of Implicit Hate Speech
    • Year: 2024