Prof. Dr. Brigitte Jaumard | Machine Learn Award | Best Researcher Award
Prof. Dr. Brigitte Jaumard, Concordia University, Canada
Prof. Dr. Brigitte Jaumard is a distinguished professor in the Computer Science and Software Engineering Department at Concordia University, Canada. She has a prolific career in academia and research, holding multiple prestigious roles, including Tier I Canada Research Chair (CRC) in Optimization of Communication Networks. Her work spans over several decades, and she has contributed significantly to the fields of artificial intelligence, communication networks, and optimization. Dr. Jaumard has also held leadership positions at the Computer Research Institute of Montreal (CRIM) and has been recognized for her innovative work in AI and machine learning. She has received numerous awards, including Best Paper Awards at international conferences. 🌟
Professional Profile
Google Scholar
Suitability for Award
Prof. Dr. Brigitte Jaumard is an ideal candidate for the Research for Best Researcher Award due to her outstanding contributions to the fields of artificial intelligence, optimization, and communication networks. Her leadership in research, exemplified by her role as a Tier I Canada Research Chair and her work in AI and machine learning, has made significant strides in both theoretical and applied research. Prof. Jaumard’s numerous awards and honors further attest to the high regard in which her work is held. Her impactful research and dedication to advancing technology make her an excellent choice for this prestigious award. 🏆
Education
🎓 Prof. Dr. Brigitte Jaumard holds a Thèse d’Habilitation from Université Pierre et Marie Curie, Paris (1990), and a Ph.D. in Electrical Engineering from École Nationale Supérieure des Télécommunications (ENST), Paris, with the highest honors in 1986. She also completed a DEA (M.Sc.) in Artificial Intelligence from Université Paris VI (1984) and a degree in Computer Engineering/Information System Engineering from Institut d’Informatique d’Entreprise (1983). Her educational background laid a solid foundation for her career in optimization, AI, and communication networks. 📘
Experience
🧑🏫 Prof. Jaumard has held several prestigious academic appointments, including as a professor at Concordia University since 2010, where she currently teaches and conducts research in optimization and AI. She served as a Tier I Canada Research Chair in Optimization of Communication Networks from 2001 to 2019. Additionally, Prof. Jaumard has been involved in administrative roles, such as the Scientific Director of CRIM and Principal Data Scientist at Ericsson’s Global AI Accelerator. Her leadership in both academic and industrial research has made significant impacts on AI and network optimization. 🌍
Awards and Honors
🏅 Prof. Jaumard has received multiple accolades, including Best Paper Awards at the IEEE International Symposium on Measurements & Networking (2022) and IEEE Sarnoff Symposium (2017). She also ranked 1st in the 2022 ITU Artificial Intelligence/Machine Learning in 5G Challenge (Graph Neural Networking) and 2nd in 2021. These awards highlight her groundbreaking contributions to AI, machine learning, and network optimization. Her consistent recognition in prestigious conferences and competitions underscores her expertise and leadership in the field. 🌟
Research Focus
🔬 Prof. Jaumard’s research focuses on optimization of communication networks, artificial intelligence, machine learning, and data-centric AI. She has made significant contributions to the development of scalable network models, including network digital twins, and has advanced the application of graph neural networks in communication systems. Her work in AI spans across both theoretical aspects and real-world applications, particularly in optimizing network performance and improving AI systems’ reliability. Prof. Jaumard’s research has had a lasting impact on both academia and industry. 🧑💻
Publication Top Notes:
-
New branch-and-bound rules for linear bilevel programming
-
Year: 1992
-
Citations: 969
-
-
Cluster analysis and mathematical programming
-
Year: 1997
-
Citations: 961
-
-
Algorithms for the maximum satisfiability problem
-
Year: 1990
-
Citations: 558
-
-
A generalized linear programming model for nurse scheduling
-
Year: 1998
-
Citations: 408
-
-
A branch and cut algorithm for nonconvex quadratically constrained quadratic programming
-
Year: 2000
-
Citations: 262
-