Prof. Dr. Xin Wang | Distributed AI | Best Researcher Award

Prof. Dr. Xin Wang | Distributed AI | Best Researcher Award

Prof. Dr. Xin Wang, Qilu University of Technology, China

Prof. Dr. Xin Wang is a distinguished scholar in Distributed AI and Federated Learning, currently serving as a Professor at Shandong Computer Science Center, Qilu University of Technology. With a Ph.D. in Control Science and Engineering from Zhejiang University, he has contributed significantly to AI Security, Privacy, and LLM Security. Dr. Wang has led multiple national research projects and received prestigious honors, including the Taishan Scholars Award and the Shandong Provincial Science and Technology Progress Award. His work integrates AI with secure computing, enhancing privacy protection and optimization in collaborative learning systems.

🌍 Professional Profile:

Google Scholar

🏆 Suitability for Award 

Dr. Xin Wang’s outstanding contributions to Distributed AI, Federated Learning, and AI Security make him a strong candidate for the Best Researcher Award. As a leader in AI-driven security frameworks, he has spearheaded national-level projects focusing on privacy-preserving AI and secure learning models. His research bridges theory with practical applications, enhancing security in multi-agent and industrial IoT systems. Recognized for his high-impact publications and award-winning research, Dr. Wang’s innovations in cryptographic function identification and UAV data collection optimization demonstrate exceptional originality and real-world relevance, solidifying his place as a leader in computational intelligence and AI security.

🎓 Education 

  • Ph.D. in Control Science and Engineering (2015-2020) – Zhejiang University, supervised by Prof. Peng Cheng & Prof. Jiming Chen, specializing in AI Security and Distributed Intelligence.
  • Visiting Scholar in Information Security (2018-2019) – Tokyo Institute of Technology, mentored by Prof. Hideaki Ishii, focusing on cryptographic vulnerabilities and federated learning security.

His multidisciplinary training across AI, security, and automation has positioned him at the forefront of cutting-edge computational research.

💼 Experience 

  • Professor (2024–Present) – Shandong Computer Science Center, Qilu University of Technology.
  • Associate Professor (2020–2024) – Shandong Computer Science Center, leading research on privacy protection in collaborative AI.
  • Project PI in National Natural Science Foundation of China (2025-2027) – Developing privacy-preserving defense mechanisms for federated learning.
  • Project PI in National Key Research and Development Program (2021-2024) – Developing AI-driven meta-services for cloud-based industrial manufacturing.
  • Visiting Scholar (2018-2019) – Tokyo Institute of Technology, conducting security research on cryptographic vulnerabilities in multi-agent IoT systems.

🏅 Awards and Honors 

  • Taishan Scholars Award (2024) 🏅 – Recognized for research excellence in AI security and distributed systems.
  • Leader of Youth Innovation Team (2022) 🚀 – Acknowledged for driving innovation in Shandong Higher Education Institutions.
  • Second Prize, Shandong Provincial Science and Technology Progress Award (2022) 🏆 – Contributions to federated learning and privacy-preserving AI.
  • Best Paper Award, CCSICC’21 📄 – Vulnerability Analysis for IoT Devices in Multi-Agent Systems.
  • Best Paper Award, ICAUS’24 ✈️ – Optimized Data Collection for UAVs in Industrial IoT Environments.

🔬 Research Focus 

Dr. Wang specializes in Distributed AI, Federated Learning, and AI Security & Privacy. His research integrates cryptographic techniques, optimization algorithms, and adversarial defenses to improve the security of collaborative learning models. He has pioneered LLM security frameworks to safeguard against data leakage and adversarial attacks. His work extends into privacy-preserving AI for multi-agent IoT systems and UAV data collection efficiency. Through national projects, he has developed secure meta-services for cloud computing, advancing the field of intelligent automation and resilient AI architectures for real-world deployment in cyber-physical systems and industrial environments.

📊 Publication Top notes:

  • Title: Privacy-Preserving Distributed Machine Learning via Local Randomization and ADMM Perturbation
    • Year: 2020
    • Citations: 61
  • Title: Privacy-Preserving Collaborative Computing: Heterogeneous Privacy Guarantee and Efficient Incentive Mechanism
    • Year: 2018
    • Citations: 49
  • Title: Differentially Private Maximum Consensus: Design, Analysis and Impossibility Result
    • Year: 2018
    • Citations: 26
  • Title: Dynamic Privacy-Aware Collaborative Schemes for Average Computation: A Multi-Time Reporting Case
    • Year: 2021
    • Citations: 18
  • Title: Leveraging UAV-RIS Reflects to Improve the Security Performance of Wireless Network Systems
    • Year: 2023
    • Citations: 17

 

Prof. Ching Yee Suen | Artificial Intelligence | Best Researcher Award

Prof. Ching Yee Suen | Artificial Intelligence | Best Researcher Award

Prof. Ching Yee Suen, Concordia University, Canada

Prof. Ching Yee Suen is a globally recognized expert in Pattern Recognition, AI, and Document Analysis. As the Founding Director and Co-Director of CENPARMI at Concordia University, he has shaped advancements in handwriting recognition, multiple classifiers, and font analysis. A Fellow of IEEE, IAPR, and the Royal Society of Canada, he has mentored 120+ graduate students and 100 visiting scientists. With 550+ research papers, 16 books, and an h-index of 74, his contributions are widely cited. His innovations power millions of devices worldwide. He has led $20M+ research projects, collaborated with global industries, and serves as an editor for top-tier journals.

🌍 Professional Profile:

Google Scholar

🏆 Suitability for Best Researcher Award 

Prof. Suen is an exceptional candidate for the Best Researcher Award due to his pioneering contributions in AI, pattern recognition, and handwriting analysis. His research has real-world impact, with millions of users benefiting from his handwriting recognition algorithms. He has received top international awards, including the King-Sun Fu Prize (2021) and ICDAR Award (2005). As a leading AI researcher, he has secured $20M+ in funding, supervised over 120 Ph.D. and master’s students, and led groundbreaking industrial collaborations. His global influence, leadership in AI, and outstanding research output make him a worthy recipient of this prestigious honor.

🎓 Education 

Prof. Ching Yee Suen holds a Ph.D. from the University of British Columbia (UBC), Vancouver, and a Master’s degree from the University of Hong Kong. His academic journey has been marked by a deep focus on Artificial Intelligence, Pattern Recognition, and Computational Vision. His early research laid the foundation for his groundbreaking work in handwriting recognition, document analysis, and AI-powered classification systems. He has spent sabbatical leaves at MIT, McGill University, Ecole Polytechnique, and IBM, further expanding his expertise. His academic credentials have established him as a leading scholar in AI and pattern recognition on a global scale.

💼 Experience 

With a career spanning 50+ years, Prof. Suen has held key leadership roles at Concordia University, serving as Chairman of Computer Science, Associate Dean (Research), and Concordia Chair in AI & Pattern Recognition. He is the Founding Director and Co-Director of CENPARMI, where he has driven cutting-edge research. He has supervised 120+ graduate students and collaborated with top institutions worldwide. As a consultant to Microsoft, Xerox, Canada Post, and the US Congress, his work has had real-world impact. His editorial leadership in top AI journals and conference organization further cements his global influence in the research community.

🏅 Awards and Honors

Prof. Suen’s excellence is recognized globally, earning him top honors in AI and pattern recognition. He received the King-Sun Fu Prize (2021) 🏆, the ICDAR Award (2005) 🎖️, and the Elsevier Distinguished Editorial Award (2016)📜. His Concordia Lifetime Research Achievement Award (2008) and Teaching Excellence Award (1995) 🎓 highlight his impact in academia. Internationally, he was honored with the Gold Medal from the University of Bari, Italy (2012) 🥇. As a Fellow of IEEE, IAPR, and the Royal Society of Canada, his contributions to AI, document analysis, and handwriting recognition are celebrated at the highest levels.

🔬 Research Focus 

Prof. Suen specializes in Pattern Recognition, Artificial Intelligence, and Document Analysis. His innovations in handwriting recognition, fake coin detection, license plate recognition, and multi-classifier systems have transformed industry applications. His research integrates AI, deep learning, and image processing to solve complex problems in computer vision, natural language processing, and fraud detection. His high-impact contributions are widely used in mobile devices, banking security, and postal services. His multi-disciplinary approach in AI has led to real-world solutions adopted by Microsoft, Bell Canada, Canada Post, and global tech firms, making him a pioneer in intelligent pattern analysis.

📊 Publication Top notes:

  • Title: Developing Knowledge Management Metrics for Measuring Intellectual Capital
    • Year: 2000
    • Citations: 442
  • Title: Modified Hebbian Learning for Curve and Surface Fitting
    • Year: 1992
    • Citations: 322
  • Title: N-Gram Statistics for Natural Language Understanding and Text Processing
    • Year: 1979
    • Citations: 315
  • Title: Analysis and Design of a Decision Tree Based on Entropy Reduction and Its Application to Large Character Set Recognition
    • Year: 1984
    • Citations: 176
  • Title: Large Tree Classifier with Heuristic Search and Global Training
    • Year: 1987
    • Citations: 102

 

 

Prof. Mamede de Carvalho | Big Data Awards | Best Researcher Award

Prof. Mamede de Carvalho | Big Data Awards | Best Researcher Award

Prof. Mamede de Carvalho, Faculdade de Medicina , Universidade de Lisboa, Portugal

Prof. Mamede de Carvalho is a distinguished medical professional renowned for his contributions to neurology and physiology. He obtained his MD from Nova Lisbon University in 1985, specializing in Neurology at the University Hospital in Lisbon in 1993. He earned his PhD in Neurology from the University of Lisbon in 2000, followed by a Habilitation in Neurosciences in 2007. Since 2010, he has served as a Full Professor of Physiology at the University of Lisbon, where he has made significant advancements in clinical neurology, particularly in ALS and neuromuscular disorders. Prof. de Carvalho’s leadership roles include Vice-Dean at the Faculty of Medicine and President of the Reynaldo dos Santos Technological Center in Lisbon. He also directed the Neuromuscular Unit at CHLN – Hospital de Santa Maria from 2009 to 2019, further cementing his impact on neurology research and practice.

🌐 Professional Profile:

Scopus

Orcid

Google Scholar

🎓 Education

Prof. Mamede de Carvalho is a distinguished medical professional with a robust academic background. He obtained his MD from Nova Lisbon University in Lisbon, Portugal, in 1985, followed by specialization in Neurology at the University Hospital in Lisbon in 1993. He earned his PhD in Neurology from the University of Lisbon in 2000 and completed his Habilitation in Neurosciences at the same institution in 2007. Since 2010, he has served as a Full Professor of Physiology at the University of Lisbon, contributing significantly to the fields of neurology and neuroscience through his research and academic leadership.

🌐 Professional Experience & Leadership

Prof. Mamede de Carvalho is a distinguished figure in neurology and physiology, having served as the President of the Reynaldo dos Santos Technological Center in Lisbon, Portugal, from 2017 to 2022. Prior to this, he held the position of Vice-Dean at the Faculty of Medicine – University of Lisbon from 2015 to 2022. With extensive expertise, he also served as the Director of the Neuromuscular Unit at CHLN – Hospital de Santa Maria in Lisbon from 2009 to 2019, contributing significantly to advancements in clinical neurology and neuromuscular disorders.

🔬 Clinical Research & Funding

Prof. Mamede de Carvalho is a pioneering figure in clinical neurology research, renowned for his contributions to advancements like Transcranial Magnetic Stimulation and the Threshold Technique for Axonal Excitability. His leadership has been instrumental in securing significant funding for projects focused on amyotrophic lateral sclerosis (ALS) and other neurodegenerative diseases, including grants from JPND and FCT.

Publication Top Notes: