Dr. Yingbin Wang | Artificial Intelligence | Best Researcher Award

Dr. Yingbin Wang | Artificial Intelligence | Best Researcher Award

Dr. Yingbin Wang, Xi’an Institute of Space Radio Technolog, China

Dr. Yingbin Wang is a leading researcher in space microwave communication, detection, and AI-driven signal processing. He earned his Ph.D. in Electronic Science and Technology from Xidian University in 2022 and currently serves as a Senior Engineer at the National Key Laboratory of Science and Technology on Space Microwave at the Xi’an Institute of Space Radio Technology. His research spans Integrated Sensing and Communication (ISAC), deep learning, and anti-jamming satellite systems. With over ten high-impact publications and contributions to national-level R&D projects, Dr. Wang is shaping the future of space-based communication and intelligent sensing. 🚀📡

🌍 Professional Profile:

Google Scholar

🏆 Suitability for the Best Researcher Award

Dr. Yingbin Wang is a highly qualified candidate for the Best Researcher Award, given his significant contributions to space microwave communication and AI-powered signal processing. His expertise in satellite-terrestrial integration, space-based radar target detection, and anti-jamming satellite systems plays a crucial role in advancing global space technology. With publications in top-tier IEEE journals, participation in national R&D projects, and contributions to cutting-edge ISAC applications, Dr. Wang is at the forefront of next-generation communication research. His work in AI-driven remote sensing is revolutionizing the field, making him a distinguished and deserving nominee. 🏆🚀

🎓 Education

Dr. Yingbin Wang pursued his entire higher education at Xidian University, China, a prestigious institution in electronic engineering and space communication. He obtained his Ph.D. in Electronic Science and Technology in June 2022, focusing on advanced space microwave systems and AI-enhanced signal processing. His doctoral research contributed to improving satellite communication resilience, radar detection, and deep learning applications in space technologies. Throughout his academic journey, he combined hardware engineering with AI-driven software models, enabling breakthroughs in integrated satellite-terrestrial communication. His strong foundation in electromagnetic waves, remote sensing, and computational intelligence defines his research excellence. 🎓📡🔬

💼 Experience 

Dr. Yingbin Wang is a Senior Engineer at the National Key Laboratory of Science and Technology on Space Microwave, Xi’an Institute of Space Radio Technology. His role involves leading research in space microwave communication, detection, and AI-driven signal optimization. He has contributed to major national R&D projects, including space-based radar target detection, anti-jamming satellite communication, and integrated sensing for satellite-terrestrial networks. His work on AI-based signal processing and deep learning models has significantly enhanced real-time space communication efficiency. His expertise in high-frequency electromagnetic applications and AI-powered satellite technology is instrumental in shaping the future of space communications. 🚀📶

🏅 Awards & Honors 

Dr. Yingbin Wang has received multiple recognitions for his contributions to space communication and AI-driven signal processing. His research in anti-jamming satellite networks has been awarded national-level research funding. He has received Best Paper Awards at leading IEEE conferences on signal processing and remote sensing. Additionally, his contributions to integrated satellite-terrestrial communication have been recognized by the National Science and Technology Innovation Program. As a reviewer for top IEEE journals, he actively contributes to the scientific community. His pioneering work in AI-enhanced space sensing continues to push the boundaries of satellite communication technologies. 🏆📡

🔬 Research Focus 

Dr. Yingbin Wang’s research spans Artificial Intelligence, communication, deep learning, and signal processing, with a strong emphasis on space microwave communication and detection. His work explores AI-driven radar target detection, anti-jamming satellite communication, and integrated sensing and communication (ISAC) systems. He develops machine learning models for real-time adaptive signal processing, enhancing satellite-terrestrial connectivity. His studies in neural network-driven space communication systems optimize data transmission efficiency in complex space environments. His research is critical for next-generation deep-space exploration, smart communication networks, and high-performance microwave technology, ensuring global connectivity and security in aerospace applications. 🚀📡🛰️

📖 Publication Top Notes

  1. SPB-Net: A Deep Network for SAR Imaging and Despeckling with Downsampled Data
    • Journal: IEEE Transactions on Geoscience and Remote Sensing
    • Publication Year: 2020
    • Citations: 27
  2. Lq-SPB-Net: A Real-Time Deep Network for SAR Imaging and Despeckling
    • Journal: IEEE Transactions on Geoscience and Remote Sensing
    • Publication Year: 2021
    • Citations: 8
  1. Multi-Scale and Single-Scale Fully Convolutional Networks for Sound Event Detection
    • Journal: Neurocomputing
    • Publication Year: 2021
    • Citations: 18
  2. MSFF-Net: Multi-Scale Feature Fusing Networks with Dilated Mixed Convolution and Cascaded Parallel Framework for Sound Event Detection
    • Journal: Digital Signal Processing
    • Publication Year: 2022
    • Citations: 12
  1. A Convex Optimization Algorithm for Compressed Sensing in a Complex Domain: The Complex-Valued Split Bregman Method
    • Journal: Sensors
    • Publication Year: 2019
    • Citations: 13

 

Prof. Ching Yee Suen | Artificial Intelligence | Best Researcher Award

Prof. Ching Yee Suen | Artificial Intelligence | Best Researcher Award

Prof. Ching Yee Suen, Concordia University, Canada

Prof. Ching Yee Suen is a globally recognized expert in Pattern Recognition, AI, and Document Analysis. As the Founding Director and Co-Director of CENPARMI at Concordia University, he has shaped advancements in handwriting recognition, multiple classifiers, and font analysis. A Fellow of IEEE, IAPR, and the Royal Society of Canada, he has mentored 120+ graduate students and 100 visiting scientists. With 550+ research papers, 16 books, and an h-index of 74, his contributions are widely cited. His innovations power millions of devices worldwide. He has led $20M+ research projects, collaborated with global industries, and serves as an editor for top-tier journals.

🌍 Professional Profile:

Google Scholar

🏆 Suitability for Best Researcher Award 

Prof. Suen is an exceptional candidate for the Best Researcher Award due to his pioneering contributions in AI, pattern recognition, and handwriting analysis. His research has real-world impact, with millions of users benefiting from his handwriting recognition algorithms. He has received top international awards, including the King-Sun Fu Prize (2021) and ICDAR Award (2005). As a leading AI researcher, he has secured $20M+ in funding, supervised over 120 Ph.D. and master’s students, and led groundbreaking industrial collaborations. His global influence, leadership in AI, and outstanding research output make him a worthy recipient of this prestigious honor.

🎓 Education 

Prof. Ching Yee Suen holds a Ph.D. from the University of British Columbia (UBC), Vancouver, and a Master’s degree from the University of Hong Kong. His academic journey has been marked by a deep focus on Artificial Intelligence, Pattern Recognition, and Computational Vision. His early research laid the foundation for his groundbreaking work in handwriting recognition, document analysis, and AI-powered classification systems. He has spent sabbatical leaves at MIT, McGill University, Ecole Polytechnique, and IBM, further expanding his expertise. His academic credentials have established him as a leading scholar in AI and pattern recognition on a global scale.

💼 Experience 

With a career spanning 50+ years, Prof. Suen has held key leadership roles at Concordia University, serving as Chairman of Computer Science, Associate Dean (Research), and Concordia Chair in AI & Pattern Recognition. He is the Founding Director and Co-Director of CENPARMI, where he has driven cutting-edge research. He has supervised 120+ graduate students and collaborated with top institutions worldwide. As a consultant to Microsoft, Xerox, Canada Post, and the US Congress, his work has had real-world impact. His editorial leadership in top AI journals and conference organization further cements his global influence in the research community.

🏅 Awards and Honors

Prof. Suen’s excellence is recognized globally, earning him top honors in AI and pattern recognition. He received the King-Sun Fu Prize (2021) 🏆, the ICDAR Award (2005) 🎖️, and the Elsevier Distinguished Editorial Award (2016)📜. His Concordia Lifetime Research Achievement Award (2008) and Teaching Excellence Award (1995) 🎓 highlight his impact in academia. Internationally, he was honored with the Gold Medal from the University of Bari, Italy (2012) 🥇. As a Fellow of IEEE, IAPR, and the Royal Society of Canada, his contributions to AI, document analysis, and handwriting recognition are celebrated at the highest levels.

🔬 Research Focus 

Prof. Suen specializes in Pattern Recognition, Artificial Intelligence, and Document Analysis. His innovations in handwriting recognition, fake coin detection, license plate recognition, and multi-classifier systems have transformed industry applications. His research integrates AI, deep learning, and image processing to solve complex problems in computer vision, natural language processing, and fraud detection. His high-impact contributions are widely used in mobile devices, banking security, and postal services. His multi-disciplinary approach in AI has led to real-world solutions adopted by Microsoft, Bell Canada, Canada Post, and global tech firms, making him a pioneer in intelligent pattern analysis.

📊 Publication Top notes:

  • Title: Developing Knowledge Management Metrics for Measuring Intellectual Capital
    • Year: 2000
    • Citations: 442
  • Title: Modified Hebbian Learning for Curve and Surface Fitting
    • Year: 1992
    • Citations: 322
  • Title: N-Gram Statistics for Natural Language Understanding and Text Processing
    • Year: 1979
    • Citations: 315
  • Title: Analysis and Design of a Decision Tree Based on Entropy Reduction and Its Application to Large Character Set Recognition
    • Year: 1984
    • Citations: 176
  • Title: Large Tree Classifier with Heuristic Search and Global Training
    • Year: 1987
    • Citations: 102