Paulo Eugênio da Costa Filho | Artificial Intelligence | Best Researcher Award

Mr. Paulo Eugênio da Costa Filho | Artificial Intelligence | Best Researcher Award

Researcher at Federal University of Rio Grande do Norte, Brazil

Paulo Eugênio da Costa Filho is a dedicated Brazilian researcher and educator in the field of Food Science and Technology, with a strong focus on Food Microbiology. He has played pivotal roles in advancing food safety and quality, particularly through microbiological analysis of food and food products. With over two decades of academic and scientific experience, he serves as a full professor at the Federal University of Ceará (UFC). Prof. Costa Filho is also recognized for his involvement in graduate education and leadership in various research projects and academic societies.

Profile

Education :

The academic journey of this accomplished scholar reflects a deep-rooted commitment to excellence in food science and engineering. They hold a Bachelor’s degree in Food Engineering from the Federal University of Ceará (1993), which laid a strong foundation in the principles of food processing and safety. Advancing their expertise, they pursued both a Master’s (1997) and a PhD (2003) in Food Science and Technology at the Federal University of Viçosa, where they honed their research skills and specialized knowledge in food systems. Their academic path culminated with a prestigious postdoctoral research tenure at Université Laval, Canada (2009), further enriching their global perspective and scholarly contributions to the field.

Experience :

Since 2016, the researcher has served as a Full Professor in the Department of Food Technology at the Federal University of Ceará (UFC), where they specialize in the Microbiology of Foods. In this capacity, they have played a pivotal role in shaping both academic and research directions within the field. As Coordinator of the Graduate Program in Food Science and Technology at UFC, they have demonstrated strong leadership in advancing graduate education, curriculum development, and research collaboration. Their international experience includes a valuable period as a Visiting Researcher at Université Laval in Canada, where they completed a postdoctoral fellowship, further enriching their expertise and fostering cross-border scientific exchange.

Awards and Recognitions :

Prof. Paulo Eugênio da Costa Filho is a CNPq Research Productivity Fellow – Level 1D, a prestigious recognition awarded to researchers with a consistent and influential scientific output in Brazil. This honor reflects his long-standing contributions to advancing food microbiology and food safety through innovative research and academic leadership. His impactful role in graduate education is equally distinguished; Prof. Costa Filho has been nationally recognized for his dedication to mentoring future scientists and for strengthening the graduate training infrastructure in Food Science and Technology across Brazil. His efforts have significantly influenced both academic excellence and professional development in the field.

Research Focus :

The researcher’s work in Food Microbiology is distinguished by a comprehensive and applied focus on critical areas impacting food safety and innovation. Their research emphasizes the study of pathogenic microorganisms in foods, addressing public health concerns through advanced microbiological quality control practices. They actively investigate antimicrobial compounds and bacterial biofilms, contributing to the understanding and mitigation of microbial resistance in food environments. A significant part of their work involves the development and validation of analytical methods for the precise detection and control of microorganisms, ensuring the reliability and safety of food systems. Additionally, they explore the functional properties of probiotic and antimicrobial food components, aiming to enhance the nutritional and protective qualities of food products. This multifaceted research approach reflects a strong commitment to advancing food microbiology through both scientific rigor and real-world application.

Research  Skills :

With extensive expertise in microbiological analysis of foods, this professional is deeply committed to advancing food safety and quality assurance through rigorous scientific approaches. Their work emphasizes the design of microbiological research methodologies tailored to emerging foodborne challenges and technological innovations. In addition to research, they play a pivotal role in graduate student mentorship and thesis supervision, nurturing the next generation of food scientists with a focus on critical thinking and applied microbiology. Their capacity for project coordination and academic leadership has consistently driven collaborative initiatives, strengthened interdisciplinary networks, and elevated the standards of both research output and educational excellence.

Pulication Top Notes : 

Internet of Smart Grid Things (IoSGT): Prototyping a Real Cloud-Edge Testbed

Authors: H. Santos, P. Eugênio, L. Marques, H. Oliveira, D. Rosário, E. Nogueira, et al.

Source: Anais do XIV Simpósio Brasileiro de Computação Ubíqua e Pervasiva

Citations: 7

Year: 2022

Predictive Fraud Detection: An Intelligent Method for Internet of Smart Grid Things Systems

Authors: L. Bastos, B. Martins, H. Santos, I. Medeiros, P. Eugênio, L. Marques, et al.

Source: Journal of Internet Services and Applications, Vol. 14(1), pp. 160–176

Citations: 5

Year: 2023

Analysis of Electrical Signals by Machine Learning for Classification of Individualized Electronics on the Internet of Smart Grid Things (IoSGT) Architecture

Authors: L. Marques, P. Eugênio, L. Bastos, H. Santos, D. Rosário, E. Nogueira, et al.

Source: Journal of Internet Services and Applications, Vol. 14(1), pp. 124–135

Citations: 2

Year: 2023

Virtualized 5G Testbed using OpenAirInterface: Tutorial and Benchmarking Tests

Authors: M. Dória, V. Sousa, A. Campos, N. Oliveira, P. Eduardo, C. Lima, J. Guilherme, et al.

Source: Journal of Internet Services and Applications, Vol. 15(1), pp. 523–535

Citations: Not yet cited

Year: 2024

Conclusion :

Paulo Eugênio da Costa Filho is a strong candidate for the Best Researcher Award, particularly for awards that value practical innovation, interdisciplinary research, and technology for public good. His profile showcases a rare blend of technicaldepth, creative application, and community impact, all rooted in scientific rigor and hands-on implementation. With cntinued development in publication strategy and international networking, he has the potential to become a leading figure in applied computing and sustainable technology solutions not just in Brazil, but globally.

Hamna Baig | Artificial Intelligence | Young Researcher Award

Ms. Hamna Baig | Artificial Intelligence | Young Researcher Award

Research Internee | COMSATS University Islamabad, Attock Campus | Pakistan

Hamna Baig 🎓 is a passionate and award-winning Electrical Engineering graduate from COMSATS University Islamabad, Attock Campus. A gold medalist 🥇 with a CGPA of 3.66, she blends academic brilliance with innovative research in AI, IoT, and robotics 🤖. Hamna’s dynamic work spans smart environments, RF sensing, and machine learning applications 💡. She has published multiple research papers 📚, led various technical projects, and participated in prestigious conferences 🏛️. Her leadership roles and technical writing expertise further reflect her versatility 🧠. Hamna aims to revolutionize engineering solutions through creativity, technology, and social impact 🌍.

Professional profile : 

Google Scholar

Orcid 

Summary of Suitability : 

Hamna Baig exemplifies the essence of a young and emerging researcher through her exceptional academic performance, innovative contributions to AI-driven engineering, and a prolific portfolio of research publications. A gold medalist in Electrical Engineering from COMSATS University Islamabad, she has demonstrated consistent excellence in both theoretical knowledge and practical application. With multiple high-impact publications, advanced project implementations, and recognized conference presentations, she brings outstanding promise to the future of intelligent systems and healthcare engineering. Her dedication to interdisciplinary innovation, backed by hands-on experience and leadership roles, showcases her as a rising star in engineering research.

🔹 Education & Experience :

📘 Education:

  • 🎓 B.Sc. Electrical Engineering, COMSATS University Islamabad, Attock Campus (2020–2024) – CGPA: 3.66/4.00, Gold Medalist 🏅

  • 📑 Final Year Project: AI-based Environmental Control Model for Smart Homes 🏠🤖

🧑‍💼 Experience:

  • 🧪 Internee, Electrical & Computer Engineering Dept., COMSATS, under PEC GIT Program (2024–Present)

  • ⚡ Internee, Ghazi-Barotha Hydro Power Plant (GBHPP), WAPDA (2023)

  • 🖋️ Technical Writer (Electrical/Electronics), CDR Professionals (2023–Present)

Professional Development :

Hamna Baig has actively pursued professional growth through certifications, leadership, and community engagement 🌱. She completed the prestigious “Machine Learning Specialization” by DeepLearning.AI 🤖, “Generative AI for Everyone” 🧠, and several tech courses from Stanford, Yonsei, and the University of Michigan via Coursera 🎓. As a proactive learner, she enhances her skills in AI, IoT, wireless communication, and public speaking 🎤. Hamna has held key roles such as President of the Sports Society 🏸, Co-Campus Director of AICP 🧑‍🔬, and VP of COMSATS Science Society. Her drive to uplift communities and advance technology sets her apart 🌟.

Research Focus : 

Hamna’s research centers on the integration of Artificial Intelligence and Machine Learning into real-world electrical and biomedical systems 🤖🧠. She explores SDR-based gait monitoring for Parkinson’s patients 🧓, AI-controlled environmental systems for energy-efficient smart homes 🌡️, and intelligent robotic applications in agriculture 🤖🍎. Her work emphasizes non-invasive health monitoring using RF sensing 🛏️ and AI-powered automation solutions. She is deeply invested in translating complex algorithms into practical, user-centric applications that elevate health, comfort, and productivity ⚡. Her interdisciplinary approach bridges electrical engineering with innovative computing solutions 🔌📊.

Awards & Honors :

  • 🏆 Awards & Certificates:

    • 🥇 Gold Medalist, COMSATS University Islamabad (2024)

    • 🧾 Certificate of Gratitude, ICTIS Conference, UET Peshawar (2024)

    • 📜 Certificate of Gratitude, ICCSI Conference, University of Haripur (2024)

    • 🧠 ML Specialization Certificate, DeepLearning.AI – Stanford (2023)

    • 🧬 Generative AI for Everyone – DeepLearning.AI (2025)

    • 🧏‍♀️ Public Speaking Specialization – University of Michigan (2024)

    • 📶 Wireless Communications Course – Yonsei University (2024)

    • 🎓 Prime Minister’s Youth Laptop Scheme Awardee (2023)

    • 🥇 Winner – IoT Pick and Place Robotic Competition, COMSATS (2024)

    • 🧒 Student of the Year – COMSATS University, Attock (2023)

Publication Top Notes : 

  • Title: Intelligent Frozen Gait Monitoring using Software Defined Radio Frequency Sensing
    Citation: Electronics, 14(8), 1603, 2025
    Authors: Khan, M. B., Baig, H., Hayat, R., Tanoli, S. A. K., Rehman, M., Thakor, V. A., & Haider, D.
    Year: 2025

  • Title: Machine Learning-Based Estimation of End Effector Position in Three-Dimension Robotic Workspace
    Citation: IJIST Journal (Impact Factor: 4.312)
    Authors: Baig, H., Ahmed, E., Jadoon, I., & Pakistan, K. C. A.
    Year: 2024

  • Title: A Robotic Approach for Fruit Harvesting with Machine Learning-Based Joint Angles Prediction
    Citation: Submitted to ICCSI – International Conference on Computational Sciences and Innovations
    Authors: Baig, H., Baig, A.A, Ahmed, E., Jadoon, I., & Pakistan
    Year: 2024

  • Title: Artificial Intelligence Based Adaptive Fan Control in Office Settings for Energy Efficiency
    Citation: Submitted to ICCIS – Proceedings to Springer Journal
    Authors: Baig, H.
    Year: 2024

  • Title: A Robotic Arm Based Intelligent Biopsy System
    Citation: Submitted to ICCIS – Kohat University, Springer Proceedings
    Authors: Baig, H.
    Year: 2024

  • Title: Design of an Intelligent Wireless Channel State Information Sensing System to Prevent Bedsores
    Citation: IEEE Sensors Journal (Under Review)
    Authors: Baig, H.
    Year: 2024

  • Title: Enhancing Home Comfort and Energy Consumption with an Artificial Intelligence-Based Environmental Sensing Control Model
    Citation: PeerJ (Computer Science) (Under Review)
    Authors: Baig, H.
    Year: 2024

  • Title: Breathing Techniques Redefined: The Pros and Cons of Traditional Methods and the Promise of SDRF Sensing
    Citation: Elsevier – Digital Communications and Networks (Under Review)
    Authors: Baig, H.
    Year: 2024

Conclusion : 

  • Hamna Baig not only meets but exceeds the expectations of a Young Researcher Award recipient. Her innovative mindset, research productivity, and real-world problem-solving approach make her an ideal candidate. Her work is not just academically sound but socially impactful—especially in the domains of healthcare and automation. She is a beacon of excellence and innovation, representing the future of engineering research. 🌟

 

Prof. Dr. Dongxing Song | Machine Learning | Best Researcher Award-3904

Prof. Dr. Dongxing Song | Machine Learning | Best Researcher Award

Prof. Dr. Dongxing Song, Zhengzhou University, China

Prof. Dr. Dongxing Song is an innovative researcher in power engineering and thermophysics, currently serving as a Research Fellow at Zhengzhou University’s School of Mechanics and Safety Engineering. He earned his doctoral degree from Tsinghua University and previously studied at Xi’an Jiaotong University and Central South University. His expertise lies in nanofluid dynamics, ionic thermoelectric conversion, and energy system optimization. Dr. Song’s research integrates machine learning with thermodynamics, pushing boundaries in sustainable energy technologies. His work has been published in top-tier journals such as Joule and Cell Reports Physical Science, gaining recognition for both originality and technical depth. Driven by scientific rigor and curiosity, Dr. Song continues to shape future solutions for clean energy and advanced material systems. ⚛️🔬🌱

🌍 Professional Profile 

Orcid

Google Scholar

🏆 Suitability for Best Researcher Award 

Prof. Dr. Dongxing Song is a standout candidate for the Best Researcher Award due to his cutting-edge work in ionic thermoelectric energy conversion and nanoscale heat transfer. His publications in high-impact journals, including Joule and Cell Reports Physical Science, demonstrate his role in shaping the future of clean and efficient energy generation. Dr. Song has independently led national-level research projects supported by the NSFC and China Postdoctoral Science Foundation, focusing on ion-electron coupling mechanisms and dynamic heat-mass transport. His interdisciplinary approach—blending thermophysics, machine learning, and materials science—makes him a trailblazer in green energy innovation. His research not only advances scientific understanding but also offers scalable solutions for low-grade waste heat recovery. 🔋🏅🌍

🎓 Education

Prof. Dr. Dongxing Song holds a robust academic background in power engineering and thermophysics. He completed his Ph.D. at Tsinghua University (2018–2022) under Prof. Weigang Ma, following his Master’s studies at Xi’an Jiaotong University (2015–2018) under Prof. Dengwei Jing. His foundational education in Thermal Energy and Power Engineering was completed at Central South University (2011–2015), where he was mentored by Dengwei Jing and Jianzhi Zhang. Throughout his academic journey, Dr. Song developed deep expertise in energy conversion, ionic transport, and thermodynamic modeling. His cross-institutional training at China’s most prestigious engineering schools laid the groundwork for his innovative and interdisciplinary research in the clean energy domain. 🎓📘⚙️

💼 Experience

Since February 2022, Dr. Dongxing Song has served as a Research Fellow at the School of Mechanics and Safety Engineering, Zhengzhou University, contributing significantly to ionic thermoelectric research. He previously pursued advanced research at Tsinghua University, one of China’s top engineering institutions, from 2018 to 2022. His earlier academic appointments include graduate research at Xi’an Jiaotong University and Central South University, where he gained hands-on experience in power engineering, energy optimization, and thermophysical modeling. In every role, Dr. Song has demonstrated scientific leadership, managing national-level projects and publishing influential research. His experience reflects a well-rounded career rooted in high-impact research and technological innovation in sustainable energy. 🧑‍🔬🔋📈

🏅 Awards and Honors

Prof. Dr. Dongxing Song has received prestigious grants and recognition from leading national institutions. He is the Principal Investigator of a National Natural Science Foundation of China (NSFC) Original Exploration Program Project, as well as multiple China Postdoctoral Science Foundation awards, including the Innovative Talents Grant (BX20220275). His work on ion thermoelectric conversion received a high recommendation from Joule Preview, marking him as a rising star in energy systems innovation. Dr. Song’s publications in top-impact journals and his ability to secure competitive funding reflect his academic excellence and research potential. These accolades highlight his position as a thought leader in the next generation of thermophysical science and energy innovation. 🥇🏛️📚

🔬 Research Focus

Dr. Dongxing Song’s research centers on the optimization of power generation systems for low-grade waste heat recovery, specifically using ion thermoelectric conversion and salt gradient power. He investigates the fundamental coupling between heat and ion transport and has derived a new expression for the ionic Seebeck coefficient, setting the stage for thermoelectric optimization. His studies also integrate nanofluidic heat transfer, solid-state ion battery transport, and machine learning to enhance the performance of sustainable energy devices. His broader focus includes nanoscale heat and mass transfer, where he explores transport mechanisms across interfaces using simulation and experimental validation. Dr. Song’s pioneering models are helping redefine energy recovery systems with enhanced efficiency and low environmental impact. 🔬♻️🧪

📊 Publication Top Notes

  • Design of Microchannel Heat Sink with Wavy Channel and Its Time-Efficient Optimization with Combined RSM and FVM Methods

    • Citations: 209
    • Year: 2016

  • Optimization of a Circular-Wavy Cavity Filled by Nanofluid under Natural Convection Heat Transfer

    • Citations: 194
    • Year: 2016

  • Optimization of a Lid-Driven T-Shaped Porous Cavity to Improve the Nanofluids Mixed Convection Heat Transfer

    • Citations: 138
    • Year: 2017

  • Prediction of Hydrodynamic and Optical Properties of TiO₂/Water Suspension Considering Particle Size Distribution

    • Citations: 87
    • Year: 2016

  • A Nitrogenous Pre-Intercalation Strategy for the Synthesis of Nitrogen-Doped Ti₃C₂Tₓ MXene with Enhanced Electrochemical Capacitance

    • Citations: 71
    • Year: 2021

 

Dr. Yingbin Wang | Artificial Intelligence | Best Researcher Award

Dr. Yingbin Wang | Artificial Intelligence | Best Researcher Award

Dr. Yingbin Wang, Xi’an Institute of Space Radio Technolog, China

Dr. Yingbin Wang is a leading researcher in space microwave communication, detection, and AI-driven signal processing. He earned his Ph.D. in Electronic Science and Technology from Xidian University in 2022 and currently serves as a Senior Engineer at the National Key Laboratory of Science and Technology on Space Microwave at the Xi’an Institute of Space Radio Technology. His research spans Integrated Sensing and Communication (ISAC), deep learning, and anti-jamming satellite systems. With over ten high-impact publications and contributions to national-level R&D projects, Dr. Wang is shaping the future of space-based communication and intelligent sensing. 🚀📡

🌍 Professional Profile:

Google Scholar

🏆 Suitability for the Best Researcher Award

Dr. Yingbin Wang is a highly qualified candidate for the Best Researcher Award, given his significant contributions to space microwave communication and AI-powered signal processing. His expertise in satellite-terrestrial integration, space-based radar target detection, and anti-jamming satellite systems plays a crucial role in advancing global space technology. With publications in top-tier IEEE journals, participation in national R&D projects, and contributions to cutting-edge ISAC applications, Dr. Wang is at the forefront of next-generation communication research. His work in AI-driven remote sensing is revolutionizing the field, making him a distinguished and deserving nominee. 🏆🚀

🎓 Education

Dr. Yingbin Wang pursued his entire higher education at Xidian University, China, a prestigious institution in electronic engineering and space communication. He obtained his Ph.D. in Electronic Science and Technology in June 2022, focusing on advanced space microwave systems and AI-enhanced signal processing. His doctoral research contributed to improving satellite communication resilience, radar detection, and deep learning applications in space technologies. Throughout his academic journey, he combined hardware engineering with AI-driven software models, enabling breakthroughs in integrated satellite-terrestrial communication. His strong foundation in electromagnetic waves, remote sensing, and computational intelligence defines his research excellence. 🎓📡🔬

💼 Experience 

Dr. Yingbin Wang is a Senior Engineer at the National Key Laboratory of Science and Technology on Space Microwave, Xi’an Institute of Space Radio Technology. His role involves leading research in space microwave communication, detection, and AI-driven signal optimization. He has contributed to major national R&D projects, including space-based radar target detection, anti-jamming satellite communication, and integrated sensing for satellite-terrestrial networks. His work on AI-based signal processing and deep learning models has significantly enhanced real-time space communication efficiency. His expertise in high-frequency electromagnetic applications and AI-powered satellite technology is instrumental in shaping the future of space communications. 🚀📶

🏅 Awards & Honors 

Dr. Yingbin Wang has received multiple recognitions for his contributions to space communication and AI-driven signal processing. His research in anti-jamming satellite networks has been awarded national-level research funding. He has received Best Paper Awards at leading IEEE conferences on signal processing and remote sensing. Additionally, his contributions to integrated satellite-terrestrial communication have been recognized by the National Science and Technology Innovation Program. As a reviewer for top IEEE journals, he actively contributes to the scientific community. His pioneering work in AI-enhanced space sensing continues to push the boundaries of satellite communication technologies. 🏆📡

🔬 Research Focus 

Dr. Yingbin Wang’s research spans Artificial Intelligence, communication, deep learning, and signal processing, with a strong emphasis on space microwave communication and detection. His work explores AI-driven radar target detection, anti-jamming satellite communication, and integrated sensing and communication (ISAC) systems. He develops machine learning models for real-time adaptive signal processing, enhancing satellite-terrestrial connectivity. His studies in neural network-driven space communication systems optimize data transmission efficiency in complex space environments. His research is critical for next-generation deep-space exploration, smart communication networks, and high-performance microwave technology, ensuring global connectivity and security in aerospace applications. 🚀📡🛰️

📖 Publication Top Notes

  1. SPB-Net: A Deep Network for SAR Imaging and Despeckling with Downsampled Data
    • Journal: IEEE Transactions on Geoscience and Remote Sensing
    • Publication Year: 2020
    • Citations: 27
  2. Lq-SPB-Net: A Real-Time Deep Network for SAR Imaging and Despeckling
    • Journal: IEEE Transactions on Geoscience and Remote Sensing
    • Publication Year: 2021
    • Citations: 8
  1. Multi-Scale and Single-Scale Fully Convolutional Networks for Sound Event Detection
    • Journal: Neurocomputing
    • Publication Year: 2021
    • Citations: 18
  2. MSFF-Net: Multi-Scale Feature Fusing Networks with Dilated Mixed Convolution and Cascaded Parallel Framework for Sound Event Detection
    • Journal: Digital Signal Processing
    • Publication Year: 2022
    • Citations: 12
  1. A Convex Optimization Algorithm for Compressed Sensing in a Complex Domain: The Complex-Valued Split Bregman Method
    • Journal: Sensors
    • Publication Year: 2019
    • Citations: 13