Dr. Jianhuan Cen | AI for Science Awards | Best Researcher Award

Dr. Jianhuan Cen | AI for Science Awards | Best Researcher Award

Dr. Jianhuan Cen, Sun Yat-sen University, China

Dr. Jianhuan Cen holds a master’s degree in Computational Mathematics and a bachelor’s degree in Information and Computing Science from Sun Yat-sen University, where he has consistently excelled academically and earned multiple scholarships. His research has made significant strides in AI model benchmarking for molecular property prediction and crystal structure prediction using diffusion models, showcasing his ability to integrate deep learning with scientific computation. Dr. Cen’s work has implications for material science and molecular simulation. He is known for his collaborative spirit and leadership in various research projects and software development efforts, and his versatility is evident from his involvement in programming problem review and testing school OJ websites.

Professional Profile:

Scopus
Google Scholar

Educational Background:

Dr. Cen has a robust academic foundation, with a master’s degree in Computational Mathematics and a bachelor’s degree in Information and Computing Science from Sun Yat-sen University, a leading institution in China. He has excelled academically and received multiple scholarships for his achievements.

Technical Skills and Contributions:

He has extensive hands-on experience in distributed computing, high-performance computing, and algorithm implementation using C/C++, Python, and Matlab. Dr. Cen’s project experience includes:

Implementing Locality Sensitive Hashing (LSH) on distributed clusters using Hadoop and Spark.

Developing a Non-Volatile Memory (NVM) based linear hash index, showcasing expertise in advanced database systems and memory environments.

Research Impact:

Dr. Cen has contributed to various high-impact projects, including AI model benchmarking for molecular property prediction and crystal structure prediction using diffusion models. His interdisciplinary work bridges the gap between deep learning and scientific computation, which could have broad applications in areas like material science and molecular simulation.

Collaboration and Leadership:

He has been involved in multiple research projects and collaborative software development efforts, indicating strong teamwork and leadership capabilities. He has also reviewed programming problems and tested school OJ websites, demonstrating his versatility.

Research Excellence:

Dr. Cen’s research focuses on solving high-dimensional partial differential equations (PDEs) using deep learning methods. He has developed innovative approaches that combine cutting-edge deep learning techniques with finite volume methods to tackle these complex problems.

Research Publications

1.  “Adaptive Trajectories Sampling for Solving PDEs with Deep Learning Methods” (Applied Mathematics and Computation).

2.  “Deep Finite Volume Methods for Partial Differential Equations” (SSRN).

Conclusion:

Dr. Jianhuan Cen’s academic achievements, research contributions in deep learning and computational mathematics, and technical prowess make him an outstanding candidate for the Best Researcher Award. His work is not only theoretically rigorous but also practically applicable, showing promise for future advancements in both academic and industrial contexts.