Tatiana Tchemisova Cordeiro | Graph Theory | Women Researcher Award

Assoc. Prof. Dr. Tatiana Tchemisova Cordeiro | Graph Theory | Women Researcher Award

Associate Professor | University of Aveiro | Portugal 

Assoc. Prof. Dr. Tatiana Tchemisova Cordeiro is a distinguished mathematician and academic leader at the University of Aveiro, Portugal, renowned for her expertise in applied mathematics, optimization, and operational research. She earned her Ph.D. in Physical and Mathematical Sciences from the National Academy of Sciences of Belarus, with degree equivalency recognized by the University of Aveiro, and also holds graduate and master’s degrees in mathematics from Belarusian State University. Fluent in multiple languages, she has built an international academic career through teaching, research, and coordination of numerous Erasmus+ educational innovation projects.Assoc. Prof. Dr. Tatiana Tchemisova Cordeiro has served in key academic roles, including vice-director of the master’s program in mathematics and applications and Erasmus departmental coordinator, while actively promoting interdisciplinary collaboration across Europe and Asia. A senior researcher at the Center for Research and Development in Mathematics and Applications (CIDMA), she has contributed extensively to projects in optimization, control theory, and applied mathematics. Her scholarly influence is reflected in 45 scientific publications, 191 citations across 111 documents, and an h-index of 8, underscoring the academic impact of her research. She is a member of several scientific societies, including the Portuguese Mathematical Society, APDIO, EUROPT, and the EURO WISDOM Forum, where she has held leadership and editorial positions. Through her commitment to research excellence, academic mentorship, and international collaboration, Professor Tchemisova continues to make significant contributions to advancing mathematics and its applications worldwide.

Profile : Scopus | Orcid

Featured Publication 

Dias, D. A., Pita, M., Tchemisova, T., Martins, N., & Cação, I. (Eds.). New approaches to entrepreneurship education: Best practices from European Universities. UA Editora.

Tchemisova, T. V., Torres, D. F., & Plakhov, A. Yu. Dynamic control and optimization, DCO 2021, Aveiro, Portugal, February 3-5, 2021. Selected, revised contributions.

Bykadorov, I., Strsuevich, V. A., & Tchemisova, T. Mathematical optimization theory and operations research: Revised selected papers of the 18th International Conference, MOTOR 2019, Ekaterinburg, Russia. Springer series of Communications in Computer and Information Science (CCIS), 1090.

Plakhov, A., Tchemisova, T., & Freitas, A. Optimization in the natural sciences: Revised selected papers of 30th Euro Mini-Conference EmC-ONS, Aveiro, Portugal, February 5-9, 2014. Springer series of Communications in Computer and Information Science (CCIS), 499.

Tchemisova Cordeiro, T. V., Kharlamova, V. I., Freitas, A., & Plakhov, A. Yu. Equações diferenciais ordinárias: Resumos teóricos, exercícios resolvidos e propostos. UA Editora, Universidade de Aveiro.

Charles Rino | Data Science | Innovative Research Award

[ays_poll id=1]

Dr. Charles Rino | Data Science | Innovative Research Award

Senior Research Engineer, Institute for Scientific Research, Boston College, United States

Dr. Charles Rino is a highly accomplished scientist with expertise in electromagnetic theory, communications, information science and advanced signal processing, whose career spans academia, defense research and technology innovation. He received his B.S. (1965) and M.S. (1966) degrees in Electrical Engineering from the University of California, Berkeley, followed by a Ph.D. in Information and Computer Science from the University of California, San Diego in 1970 under Prof. Carl W. Helstrom. His professional experience includes over a decade at SRI International, where he played a key role in the Chatanika Auroral-Zone Radar Project, satellite beacon programs and communication studies in disturbed environments; Mission Research Corporation, where he directed radar scattering projects and Vista Research, Inc., where as Vice President of Research he led DARPA, ONR and ARO-funded projects on adaptive signal processing, Bayesian detection, radar surveillance and technology commercialization. His research interests focus on ionospheric physics, wave propagation, electromagnetic scattering and remote sensing, while his research skills include multi-channel signal processing, algorithm development, radar system design and data analysis for complex environments. Dr. Charles Rino has authored more than 50 peer-reviewed publications, contributed to IEEE and AGU conferences and published the authoritative book The Theory of Scintillation with Applications in Remote Sensing (2011). His scholarly impact is reflected in 2,787 citations, 117 publications, and an h-index of 29. Honors include IEEE Fellowship (1989), Eta Kappa Nu, Tau Beta Pi, and early recognition as a NASA Trainee. Currently a Visiting Scholar at Boston College and Senior Research Scientist at Colorado State University, Dr. Charles Rino continues to advance global research through innovation, leadership and mentorship.

Profile: Scopus | ORCID

Featured Publications

  1. Rino, C. L., Brekke, A., & Baron, M. J. (1977). High-resolution auroral zone E-region neutral wind and current measurements by incoherent scatter radar. Journal of Geophysical Research: Space Physics, 82(16), 2295–2304.

  2. Fremouw, E. J., Rino, C. L., Livingston, R. C., & Cousins, M. C. (1977). A persistent subauroral scintillation enhancement observed in Alaska. Geophysical Research Letters, 4(11), 539–542.

  3. Rino, C. L., & Fremouw, E. J. (1977). The angle dependence of singly scattered wave fields. Journal of Atmospheric and Terrestrial Physics, 39(7), 859–868.

  4. Fremouw, E. J., Leadabrand, R. L., Livingston, R. C., Cousins, M. D., Rino, C. L., Fair, B. C., & Long, R. A. (1978). Early results from the DNA wideband satellite experiment: Complex-signal scintillation. Radio Science, 13(1), 167–187.

  5. Rino, C. L. (1979). A power law phase screen model for ionospheric scintillation: 1. Weak scatter. Radio Science, 14(6), 1135–1145.

 

Narendra V Ganganagowdar | Machine Learning | Best Researcher Award

[ays_poll id=1]

Dr. Narendra V Ganganagowdar | Machine Learning | Best Researcher Award

Professor at Manipal Institute of Technology | India

Dr. Narendra V. Ganganagowdar is a seasoned academic and researcher with over 26 years of experience in computer science and engineering. He is a Professor at MIT Manipal, with expertise in computer graphics, image processing, artificial intelligence, and soft computing techniques. He has contributed significantly to research, teaching, consultancy, and academic leadership, mentoring numerous students, securing grants, and publishing extensively in indexed journals and conferences. Dr. Ganganagowdar is an active member of multiple professional organizations and serves in advisory roles at the department and institutional level.

Professional Profile:

Education: 

Dr. Narendra V. Ganganagowdar completed his Ph.D. in Computer Science and Engineering from MIT Manipal, Manipal University. He earned his M.Tech. in Computer Science and Engineering from JNNCE, Shimoga (VTU Belgaum), and his B.E. in Computer Science and Engineering from STJIT Ranebennur (Karnataka University, Dharwad). His academic training laid the foundation for his expertise in advanced computing technologies and engineering education.

Experience:

Dr. Narendra V. Ganganagowdar’s academic career spans multiple roles, including Professor at MIT Manipal, Associate Professor, and Assistant Professor. He began his career as a Lecturer at STJIT Ranebennur and BIET Davangere, and progressed through senior roles contributing to teaching, research, and administration. He has organized workshops, FDPs, and short-term programs, served as a resource person in various technical talks, and evaluated Ph.D. theses at multiple universities. Additionally, he has provided consultancy in projects such as automation for managing country labels and NLP applications in healthcare, and secured research grants exceeding Rs. 80 lakhs from government and industry sources.

Research Interests:

Dr. Narendra V. Ganganagowdar research focuses on computer graphics, algorithms, image processing, computer vision, artificial intelligence, and soft computing techniques. Dr. Ganganagowdar’s work integrates programming languages like C, C++, Python, MATLAB, and tools such as OpenGL, Weka, MySQL, and platforms across Windows and Unix/Linux environments. His interests extend to solving real-world problems through computational intelligence, improving machine learning pipelines, and applying AI techniques in healthcare and other domains.

Publications Top Noted:

  1. A federated learning-based crop yield prediction for agricultural production risk management, Year: 2022, Citation: 75

  2. A trusted IoT data sharing and secure oracle based access for agricultural production risk management, Year: 2023, Citation: 55

  3. Study and comparison of various image edge detection techniques used in quality inspection and evaluation of agricultural and food products by computer vision, Year: 2011, Citation: 52

  4. A Blockchain Based Decentralized Identifiers for Entity Authentication in Electronic Health Records, Year: 2022, Citation: 50

  5. An intelligent computer vision system for vegetables and fruits quality inspection using soft computing techniques, Year: 2019, Citation: 33

Conclusion:

Dr. Narendra V. Ganganagowdar exemplifies dedication, innovation, and excellence in machine learning and computer science education. His work integrates cutting-edge technologies with practical applications, particularly in agriculture and healthcare, addressing key societal challenges. Through mentorship, research leadership, and consultancy, he has fostered a collaborative and impactful academic environment. His expertise in AI and soft computing continues to inspire students and peers alike. Recognition through the Best Researcher Award under the Global Network & Technology Excellence Awards celebrates his outstanding contributions to technology, education, and societal advancement.

Prof. Keon Baek | Data analysis | Best Researcher Award

Keon Baek | Data analysis | Best Researcher Award

Keon Baek | Chosun University | South Korea

Keon Baek is a dedicated Data Scientist and Electrical Engineer based in Gwangju, South Korea 1 🇰🇷. With a strong academic background and practical experience, he focuses on power market analysis, policy design, and technology development through insightful data analysis 📊. His research interests include consumer behavior 💡, demand flexibility 🔄, market and policy implications 🏛️, and the growing field of vehicle electrification 🚗⚡. Keon’s passion lies in leveraging data to shape the future of sustainable energy.

Professional profile : 

orcid

Google scholar

Summary of Suitability : 

Keon Baek, a dedicated Data Scientist and Electrical Engineer from Gwangju, South Korea, is an excellent candidate for the Best Researcher Award. With a robust academic foundation and a wealth of hands-on experience, Keon has demonstrated significant contributions to the fields of power market analysis, policy design, and technology development. His expertise lies in using data to inform decisions around sustainable energy, which aligns perfectly with the award’s criteria for groundbreaking research that drives innovation and societal impact.

Education :

  • Ph.D. (Power System & Economics) – Gwangju Institute of Science and Technology (2020.03 – 2023.02) ⚡💰
  • M.S. (Power System & Economics) – Gwangju Institute of Science and Technology (2018.03 – 2020.02) 💡📈
  • B.S. (Electrical Engineering) – Korea Advanced Institute of Science and Technology (2004.03 – 2011.02) ⚙️🔌

Experience :

  • Assistant Professor, Dept. of Electrical Engineering – Chosun University (2023. 09 – 2023. 08) 👨‍🏫💡
  • Post-doc., Research Institute for Solar and Sustainable Energies (RISE) – Gwangju Institute of Science and Technology (2023. 02 – 2023.08) ☀️🌱
  • Electric Engineer, Distribution Transformer Division – Hyundai (2017. 04 – 2018. 07) 🏭⚡
  • Engineer, Offshore Plant Engineering Center – Korea Shipbuilding & Offshore Engineering (2015. 02 – 2017. 03) 🚢🌊
  • Associate Researcher, Wind Power System Research Center – Korea Shipbuilding & Offshore Engineering (2011. 02 – 2015. 01)
  • Publication Top NOTES :
    Resident Behavior Detection Model for Environment Responsive Demand Response :
    • Authors: K. Baek, E. Lee, J. Kim

    • Published in: IEEE Transactions on Smart Grid, 2021, Vol. 12, Issue 5, Pages 3980-3989

    • Citations: 35

    • Summary: This paper proposes a model for detecting resident behavior in smart grid environments, aiming to optimize demand response (DR) mechanisms. The approach focuses on adjusting electricity usage patterns by predicting and responding to residents’ behavior, enhancing both energy efficiency and grid reliability. This model is crucial for increasing the responsiveness and flexibility of demand response programs in residential areas.

    Evaluation of Demand Response Potential Flexibility in the Industry Based on a Data-Driven Approach :
    • Authors: E. Lee, K. Baek, J. Kim

    • Published in: Energies, 2020, Vol. 13, Issue 23, Article 6355

    • Citations: 28

    • Summary: This study assesses the potential flexibility of demand response programs in industrial settings using a data-driven approach. It evaluates how various industrial processes can be adjusted to provide flexibility in energy consumption without negatively impacting production efficiency. The research also explores the use of real-time data to enhance decision-making in demand response strategies, enabling more effective integration of renewable energy sources.

    Multi-Objective Optimization of Home Appliances and Electric Vehicles Considering Customer’s Benefits and Offsite Shared Photovoltaic Curtailment :
    • Authors: Y. Kwon, T. Kim, K. Baek, J. Kim

    • Published in: Energies, 2020, Vol. 13, Issue 11, Article 2852

    • Citations: 22

    • Summary: This paper discusses a multi-objective optimization approach for managing home appliances and electric vehicles (EVs) while considering customer benefits and photovoltaic (PV) energy curtailment. It focuses on maximizing the benefits to consumers by coordinating the use of home appliances and EVs with the availability of solar energy while reducing the waste of excess PV power. The study is significant for improving the efficiency of residential energy management systems.

    Stochastic Optimization-Based Hosting Capacity Estimation with Volatile Net Load Deviation in Distribution Grids : 
    • Authors: Y. Cho, E. Lee, K. Baek, J. Kim

    • Published in: Applied Energy, 2023, Vol. 341, Article 121075

    • Citations: 13

    • Summary: The research proposes a stochastic optimization method to estimate hosting capacity in distribution grids, accounting for the volatile nature of net load deviation. The study addresses challenges related to integrating renewable energy sources, such as solar and wind, into existing power grids. It develops a model that quantifies the grid’s capacity to absorb additional renewable energy without compromising stability, providing valuable insights for grid operators managing increasing renewable penetration.

    Datasets on South Korean Manufacturing Factories’ Electricity Consumption and Demand Response Participation :
    • Authors: E. Lee, K. Baek, J. Kim

    • Summary: This dataset publication presents detailed information on electricity consumption patterns and the participation of South Korean manufacturing factories in demand response programs. It provides real-world data that can be used to evaluate the effectiveness of demand response strategies and analyze consumption behaviors in industrial sectors. Researchers and energy managers can leverage this dataset to optimize industrial demand response programs and improve grid reliability.

Prof. Dr. Dongxing Song | Machine Learning | Best Researcher Award-3904

Prof. Dr. Dongxing Song | Machine Learning | Best Researcher Award

Prof. Dr. Dongxing Song, Zhengzhou University, China

Prof. Dr. Dongxing Song is an innovative researcher in power engineering and thermophysics, currently serving as a Research Fellow at Zhengzhou University’s School of Mechanics and Safety Engineering. He earned his doctoral degree from Tsinghua University and previously studied at Xi’an Jiaotong University and Central South University. His expertise lies in nanofluid dynamics, ionic thermoelectric conversion, and energy system optimization. Dr. Song’s research integrates machine learning with thermodynamics, pushing boundaries in sustainable energy technologies. His work has been published in top-tier journals such as Joule and Cell Reports Physical Science, gaining recognition for both originality and technical depth. Driven by scientific rigor and curiosity, Dr. Song continues to shape future solutions for clean energy and advanced material systems. ⚛️🔬🌱

🌍 Professional Profile 

Orcid

Google Scholar

🏆 Suitability for Best Researcher Award 

Prof. Dr. Dongxing Song is a standout candidate for the Best Researcher Award due to his cutting-edge work in ionic thermoelectric energy conversion and nanoscale heat transfer. His publications in high-impact journals, including Joule and Cell Reports Physical Science, demonstrate his role in shaping the future of clean and efficient energy generation. Dr. Song has independently led national-level research projects supported by the NSFC and China Postdoctoral Science Foundation, focusing on ion-electron coupling mechanisms and dynamic heat-mass transport. His interdisciplinary approach—blending thermophysics, machine learning, and materials science—makes him a trailblazer in green energy innovation. His research not only advances scientific understanding but also offers scalable solutions for low-grade waste heat recovery. 🔋🏅🌍

🎓 Education

Prof. Dr. Dongxing Song holds a robust academic background in power engineering and thermophysics. He completed his Ph.D. at Tsinghua University (2018–2022) under Prof. Weigang Ma, following his Master’s studies at Xi’an Jiaotong University (2015–2018) under Prof. Dengwei Jing. His foundational education in Thermal Energy and Power Engineering was completed at Central South University (2011–2015), where he was mentored by Dengwei Jing and Jianzhi Zhang. Throughout his academic journey, Dr. Song developed deep expertise in energy conversion, ionic transport, and thermodynamic modeling. His cross-institutional training at China’s most prestigious engineering schools laid the groundwork for his innovative and interdisciplinary research in the clean energy domain. 🎓📘⚙️

💼 Experience

Since February 2022, Dr. Dongxing Song has served as a Research Fellow at the School of Mechanics and Safety Engineering, Zhengzhou University, contributing significantly to ionic thermoelectric research. He previously pursued advanced research at Tsinghua University, one of China’s top engineering institutions, from 2018 to 2022. His earlier academic appointments include graduate research at Xi’an Jiaotong University and Central South University, where he gained hands-on experience in power engineering, energy optimization, and thermophysical modeling. In every role, Dr. Song has demonstrated scientific leadership, managing national-level projects and publishing influential research. His experience reflects a well-rounded career rooted in high-impact research and technological innovation in sustainable energy. 🧑‍🔬🔋📈

🏅 Awards and Honors

Prof. Dr. Dongxing Song has received prestigious grants and recognition from leading national institutions. He is the Principal Investigator of a National Natural Science Foundation of China (NSFC) Original Exploration Program Project, as well as multiple China Postdoctoral Science Foundation awards, including the Innovative Talents Grant (BX20220275). His work on ion thermoelectric conversion received a high recommendation from Joule Preview, marking him as a rising star in energy systems innovation. Dr. Song’s publications in top-impact journals and his ability to secure competitive funding reflect his academic excellence and research potential. These accolades highlight his position as a thought leader in the next generation of thermophysical science and energy innovation. 🥇🏛️📚

🔬 Research Focus

Dr. Dongxing Song’s research centers on the optimization of power generation systems for low-grade waste heat recovery, specifically using ion thermoelectric conversion and salt gradient power. He investigates the fundamental coupling between heat and ion transport and has derived a new expression for the ionic Seebeck coefficient, setting the stage for thermoelectric optimization. His studies also integrate nanofluidic heat transfer, solid-state ion battery transport, and machine learning to enhance the performance of sustainable energy devices. His broader focus includes nanoscale heat and mass transfer, where he explores transport mechanisms across interfaces using simulation and experimental validation. Dr. Song’s pioneering models are helping redefine energy recovery systems with enhanced efficiency and low environmental impact. 🔬♻️🧪

📊 Publication Top Notes

  • Design of Microchannel Heat Sink with Wavy Channel and Its Time-Efficient Optimization with Combined RSM and FVM Methods

    • Citations: 209
    • Year: 2016

  • Optimization of a Circular-Wavy Cavity Filled by Nanofluid under Natural Convection Heat Transfer

    • Citations: 194
    • Year: 2016

  • Optimization of a Lid-Driven T-Shaped Porous Cavity to Improve the Nanofluids Mixed Convection Heat Transfer

    • Citations: 138
    • Year: 2017

  • Prediction of Hydrodynamic and Optical Properties of TiO₂/Water Suspension Considering Particle Size Distribution

    • Citations: 87
    • Year: 2016

  • A Nitrogenous Pre-Intercalation Strategy for the Synthesis of Nitrogen-Doped Ti₃C₂Tₓ MXene with Enhanced Electrochemical Capacitance

    • Citations: 71
    • Year: 2021

 

Dr. Abdulrahman Alnaim | Technology | Excellence in Research Award

Dr. Abdulrahman Alnaim | Technology | Excellence in Research Award

Dr. Abdulrahman Alnaim | Technology – Associate Professor at King Faisal University, Saudi Arabia

Dr. Abdulrahman Khalid Alnaim is an accomplished academic and researcher specializing in computer science and information security. With a strong foundation in computer information systems and management information systems, he has dedicated his career to advancing research in emerging technologies such as cybersecurity, cloud computing, and network architecture. His work is characterized by innovative approaches to securing next-generation networks and optimizing system performance, reflecting a commitment to both academic excellence and practical applications in the tech industry.

Profile:

Google Scholar

Education:

Dr. Alnaim earned his Ph.D. in Computer Science from Florida Atlantic University, USA, where he focused on developing secure and efficient computing models. He also holds a Master’s in Management Information Systems from Nova Southeastern University, USA, which enriched his understanding of integrating technology with business strategies. His academic journey began at King Faisal University, Saudi Arabia, where he completed his Bachelor’s degree in Computer Information Systems, laying the groundwork for his passion for research and technology. This diverse educational background has enabled him to approach complex problems with a multidisciplinary perspective.

Experience:

Dr. Alnaim has served at King Faisal University, Saudi Arabia, in various academic roles. Starting as a Teacher Assistant in 2012, he quickly advanced to become a Lecturer and later an Assistant Professor in the Management Information Systems Department within the School of Business. Throughout his tenure, he has contributed significantly to curriculum development, academic research, and student mentorship. His professional journey reflects a consistent commitment to fostering an environment of academic growth, research innovation, and knowledge dissemination.

Research Interests:

Dr. Alnaim’s research interests lie in the domains of cloud technologies, cybersecurity, and network architecture, with a particular focus on emerging trends like 5G/6G networks, network function virtualization (NFV), and edge computing. His work explores the development of robust security frameworks, optimized resource management strategies, and innovative architectures for next-generation networks. His research not only addresses theoretical challenges but also provides practical solutions for enhancing cybersecurity, system efficiency, and data integrity in complex digital environments.

Awards:

While Dr. Alnaim’s distinguished academic career is marked by numerous achievements, his contributions to research have earned him recognition within the academic community. His work has been cited extensively, reflecting its influence on contemporary studies in cybersecurity and network technologies. His dedication to research excellence is evident through his continuous pursuit of knowledge, innovative problem-solving, and commitment to advancing the field of computer science.

Publications 📚:

  1. “Zero Trust Strategies for Cyber-Physical Systems in 6G Networks” (2025)Mathematics
    This paper discusses advanced security models tailored for cyber-physical systems in 6G environments. 🚀

  2. “Securing 5G Virtual Networks: A Critical Analysis of SDN, NFV, and Network Slicing Security” (2024)International Journal of Information Security
    The article provides an in-depth analysis of security vulnerabilities and countermeasures in 5G networks. 🔐

  3. “Trust Management and Resource Optimization in Edge and Fog Computing Using the CyberGuard Framework” (2024)Sensors
    This research introduces the CyberGuard framework for enhancing trust management in edge and fog computing environments. 🌐

  4. “Network Slicing in 6G: A Strategic Framework for IoT in Smart Cities” (2024)Sensors
    A strategic approach to optimizing network slicing for IoT applications in smart cities. 🏙️

  5. “Classification of Alzheimer’s Disease Using MRI Data Based on Deep Learning Techniques” (2024)Journal of King Saud University – Computer and Information Sciences
    This study leverages deep learning models to improve the early detection of Alzheimer’s disease using MRI data. 🧠

  6. “Machine-Learning-Based IoT–Edge Computing Healthcare Solutions” (2023)Electronics
    Focuses on integrating machine learning with IoT and edge computing to enhance healthcare services. 💡

  7. “A Misuse Pattern for Modifying Non-Control Threats in NFV” (2022)Future Internet
    Proposes a model to identify and mitigate non-control threats in network function virtualization environments. 🖥️

These publications have collectively garnered significant citations, underscoring their impact on academic research and industry practices. 📈

Conclusion:

Dr. Abdulrahman Khalid Alnaim exemplifies the qualities of an outstanding researcher, with a robust academic background, extensive research contributions, and a commitment to advancing the field of computer science and information security. His work in cybersecurity, cloud technologies, and network architecture has not only enriched academic discourse but also provided practical solutions to real-world challenges.

His innovative approach, combined with a strong publication record and active involvement in academic and research communities, makes him a deserving candidate for the Excellence in Research Award. Dr. Alnaim’s contributions reflect the values of academic rigor, intellectual curiosity, and a relentless pursuit of knowledge that this prestigious award seeks to honor.

Prof. Khaled Shaban | Data Science | Best Researcher Award

Prof. Khaled Shaban | Data Science | Best Researcher Award

Prof. Khaled Shaban, Qatar University, Qatar

Prof. Khaled Shaban is a distinguished researcher and professor in Computer Science and Engineering at Qatar University. With expertise in Computational Intelligence, Machine Learning, and Data Science, he has significantly contributed to advancing pattern recognition, cloud computing, and cybersecurity. A senior member of IEEE and ACM, he has received multiple accolades for his groundbreaking research. He also holds an adjunct professorship at the University of Waterloo, reinforcing his global academic influence. His work focuses on AI-driven disease prediction, smart systems, and optimization techniques, making him a leader in intelligent computing innovations.

🌍 Professional Profile:

Google Scholar

Orcid

Scopus

🏆 Suitability for Best Researcher Award

Prof. Khaled Shaban’s research excellence, innovative contributions, and global recognition make him an ideal candidate for the Best Researcher Award. His pioneering work in Machine Learning, AI, and Computational Intelligence has led to influential publications and prestigious awards, such as the Best Paper Award at IRICT 2021. His ability to merge theory and application in AI, cloud computing, and cybersecurity has significantly impacted academia and industry. His leadership in top-tier conferences and IEEE/ACM communities underscores his commitment to advancing knowledge, making him a highly deserving candidate for this distinguished recognition.

🎓 Education

Prof. Khaled Shaban holds a Ph.D. in Electrical and Computer Engineering from the University of Waterloo, Canada (2006), specializing in Pattern Recognition and Machine Intelligence. His academic journey began with an M.Sc. in Engineering Systems and Computing (2002) from the University of Guelph, Canada, where he developed a strong foundation in computational intelligence and optimization. His interdisciplinary education has enabled him to integrate machine learning, data science, and engineering systems into cutting-edge research. His expertise in algorithms and computing theory has positioned him as a global leader in AI and intelligent systems research.

💼 Experience

Prof. Khaled Shaban has an extensive academic career, currently serving as a Professor at Qatar University’s College of Engineering (since April 2021). He previously held roles as Associate Professor (2016-2021) and Assistant Professor (2008-2016). Additionally, he is an Adjunct Professor at the University of Waterloo (2021-2027), collaborating on AI-driven computing innovations. His professional affiliations with IEEE, ACM, and international research communities enhance his impact on global technological advancements. Over the years, he has mentored numerous students and led transformative research in Artificial Intelligence, Data Science, and Optimization.

🏅 Awards & Honors

  • 🏆 Best Paper AwardIRICT 2021 for “C-SAR: Class-Specific and Adaptive Recognition for Arabic Handwritten Cheques”
  • 🏅 Nomination for Best Paper AwardICVS 2021 for “MARL: Multimodal Attentional Representation Learning for Disease Prediction”
  • 🎖 Promoted to Professor – Qatar University, 2021
  • 🔬 Senior Member, IEEE & ACM – Recognized for contributions to AI and Computational Intelligence
  • 🌍 International Collaborations – Adjunct Professor at the University of Waterloo, fostering global research partnerships

🔬 Research Focus

Prof. Khaled Shaban’s research lies at the intersection of Artificial Intelligence, Computational Intelligence, and Data Science. His work in Machine Learning-driven healthcare analytics, particularly in disease prediction and medical image analysis, is widely recognized. He has also made significant contributions to cybersecurity, cloud computing, and smart grid systems. His studies on optimization and knowledge discovery enhance IoT, AI-based automation, and intelligent computing solutions. Through numerous publications and projects, he has addressed real-world challenges in AI, energy-efficient computing, and adaptive learning systems, making his research impactful across academia and industry.

📖 Publication Top Notes

  • Urban Air Pollution Monitoring System with Forecasting Models

    • Year: 2016
    • Citations: 341
  • Fault Detection, Isolation, and Service Restoration in Distribution Systems: State-of-the-Art and Future Trends

    • Year: 2016
    • Citations: 321
  • Delay-Aware Scheduling and Resource Optimization with Network Function Virtualization

    • Year: 2016
    • Citations: 266
  • A Reliability-Aware Network Service Chain Provisioning with Delay Guarantees in NFV-Enabled Enterprise Datacenter Networks

    • Year: 2017
    • Citations: 224
  • Deep Learning Models for Sentiment Analysis in Arabic

    • Year: 2015
    • Citations: 150

 

 

Assoc. Prof. Dr. Caixia Wang | Data Analysis | Best Researcher Award

Assoc. Prof. Dr. Caixia Wang | Data Analysis | Best Researcher Award

Assoc. Prof. Dr. Caixia Wang, China Foreign Affairs University, China

Assoc. Prof. Dr. Caixia Wang is an accomplished researcher and academic in the fields of quantitative investment, machine learning, and nonlinear dynamical systems. She currently serves as an Associate Professor in the School of International Economics at China Foreign Affairs University, Beijing. Dr. Wang completed her Ph.D. in Mathematics from Beijing Jiaotong University in 2016 and pursued a Joint Ph.D. in Biomedical Engineering at Johns Hopkins University. With a strong foundation in mathematical analysis, linear algebra, and probability, she has focused her research on applying mathematical modeling and computer simulations to study complex systems. Her work spans a wide range of applications, including financial modeling, machine learning, and chaos theory. Dr. Wang is dedicated to advancing the understanding of dynamic systems and their applications in economics and investment strategies. 📊💻📈

Professional Profile

Orcid

Suitability for Award 

Assoc. Prof. Dr. Caixia Wang is an ideal candidate for the Research for Best Researcher Award due to her exceptional contributions to the fields of quantitative investment, machine learning, and nonlinear dynamical systems. Her innovative approach to applying mathematical modeling and computer simulations to real-world problems, particularly in the areas of economics and investment, has set her apart as a leading researcher. Dr. Wang’s work in machine learning and data analysis has the potential to reshape financial strategies and improve decision-making processes in economics. Her interdisciplinary research, combining mathematical rigor with practical applications, makes her a trailblazer in her field. Dr. Wang’s dedication to advancing knowledge and her impact on both academia and industry demonstrate her suitability for this prestigious award. 🏆📚💡

Education 

Assoc. Prof. Dr. Caixia Wang’s educational background is a testament to her expertise in mathematics, systems theory, and engineering. She earned her Ph.D. in Mathematics from Beijing Jiaotong University in 2016, where she focused on nonlinear dynamical systems and chaos theory. Dr. Wang also pursued a Joint Ph.D. in Biomedical Engineering at Johns Hopkins University, expanding her interdisciplinary knowledge and skills. Her academic journey began with a Master’s degree in Mathematics from Beijing Jiaotong University in 2008, where she developed a strong foundation in mathematical analysis and linear algebra. Dr. Wang’s rigorous academic training has provided her with the tools to approach complex problems from multiple angles, making her a leading figure in her research fields. Her diverse educational experiences across top institutions have equipped her to make significant contributions to quantitative investment, machine learning, and dynamical systems. 🎓📐📊

Experience

Assoc. Prof. Dr. Caixia Wang brings a wealth of experience to her role as an Associate Professor at the School of International Economics, China Foreign Affairs University. She has taught courses in mathematical analysis, linear algebra, probability and statistics, and nonlinear dynamic systems, sharing her deep knowledge with the next generation of scholars. Dr. Wang’s research experience is extensive, with a particular focus on the applications of nonlinear dynamical systems and chaos theory. Her interdisciplinary expertise in machine learning and data analysis has led to groundbreaking research in quantitative investment strategies. In addition to her academic work, Dr. Wang has collaborated with researchers at top institutions, including Johns Hopkins University, where she pursued a Joint Ph.D. in Biomedical Engineering. Her academic and research experience spans multiple disciplines, allowing her to bring a unique perspective to her work and contribute to the advancement of both theoretical and applied research. 🧑‍🏫📊🔬

Awards and Honors 

Assoc. Prof. Dr. Caixia Wang’s distinguished career has earned her recognition for her groundbreaking research and contributions to the fields of mathematics, machine learning, and quantitative investment. Her work has been acknowledged through various academic awards, including fellowships and research grants that have supported her innovative research in nonlinear dynamical systems and chaos theory. Dr. Wang’s interdisciplinary approach has earned her recognition in both the academic and industry sectors, particularly for her work in quantitative investment and data analysis. She has also received accolades for her collaborative research efforts with leading institutions like Johns Hopkins University. Dr. Wang’s commitment to excellence in research and teaching has made her a respected figure in her field. Her honors reflect her ability to bridge the gap between theoretical mathematics and practical applications, making significant contributions to multiple domains. 🏅🎖️🌍

Research Focus 

Assoc. Prof. Dr. Caixia Wang’s research focuses on the applications of nonlinear dynamical systems and chaos theory, particularly in the context of quantitative investment and machine learning. She employs mathematical analysis and computer simulations to study complex systems, ranging from realistic models to simplified networks. Dr. Wang’s work in nonlinear dynamics allows for a deeper understanding of chaotic behavior in financial markets and economic systems, leading to more robust investment strategies. Her research in machine learning and data analysis seeks to enhance decision-making processes and optimize investment models. By combining her expertise in mathematics with practical applications, Dr. Wang aims to develop innovative solutions to complex problems in economics, finance, and beyond. Her interdisciplinary approach makes her research highly impactful, with the potential to transform industries by providing new insights into the behavior of dynamic systems. 💻📊💡

Publication Top Notes

  • Title: A Method for Detecting Overlapping Protein Complexes Based on an Adaptive Improved FCM Clustering Algorithm
    • Date: 2025
  • Title: Detecting Protein Complexes with Multiple Properties by an Adaptive Harmony Search Algorithm
    • Date: 2022
  • Title: An Ensemble Learning Framework for Detecting Protein Complexes From PPI Networks
    • Date: 2022
  • Title: An Improved Memetic Algorithm for Detecting Protein Complexes in Protein Interaction Networks
    • Date: 2021
  • Title: A Novel Graph Clustering Method with a Greedy Heuristic Search Algorithm for Mining Protein Complexes from Dynamic and Static PPI Networks
    • Date: 2020

 

Prof. Dr. Lei Geng | Data Analysis | Best Researcher Award

Prof. Dr. Lei Geng | Data Analysis | Best Researcher Award

Prof. Dr. Lei Geng, Tiangong University, China

Prof. Dr. Lei Geng is a distinguished professor at the School of Life Sciences, Tiangong University, with a focus on computer vision, machine learning, and measurement technology. He received his Ph.D. in 2012 from Tianjin University and has since made significant contributions to the fields of AI, machine vision, and medical technology. With over 80 published papers, Dr. Geng has played a pivotal role in the development of advanced imaging and measurement technologies for industrial and medical applications. His research includes applications in image analysis, 3D dimensional measurement, and hemostatic medical equipment. As a leader in his field, he has led more than 10 national and provincial-level projects and received numerous awards for his technological innovations. 🚀

Professional Profile:

Scopus
Orcid

Suitability for the Award

Prof. Dr. Lei Geng is highly suitable for the Best Researcher Award due to his groundbreaking work in AI, machine vision, and medical technology. His research has led to the development of advanced image analysis techniques and high-precision measurement tools, with far-reaching implications for both industrial and healthcare applications. Dr. Geng’s leadership in national and provincial projects, combined with his three provincial-level awards, highlights his ability to drive technological advancements that have a direct impact on society. His contributions to AI-based diagnostics, particularly in otolaryngology, underscore his dedication to improving healthcare through cutting-edge technologies. Prof. Geng’s consistent excellence in research, innovation, and application makes him an ideal candidate for this prestigious award. 🏅

Education

🎓 Dr. Lei Geng earned his Ph.D. in 2012 from Tianjin University, specializing in areas at the intersection of computer vision, machine learning, and measurement technology. His academic journey laid the foundation for his extensive contributions to these fields, including the development of cutting-edge applications in industrial and medical sectors. Dr. Geng’s deep understanding of both theoretical and practical aspects of machine vision and artificial intelligence has made him an expert in creating innovative solutions across multiple industries. His education has fueled his ongoing research and contributions to advancements in AI-driven healthcare and precision measurement technologies. 📘

Experience

🧑‍🏫 Prof. Dr. Lei Geng has extensive teaching and research experience, currently serving as a professor at the School of Life Sciences at Tiangong University. He has been involved in both undergraduate and postgraduate education, teaching courses such as Machine Vision and Deep Learning. Over his career, Dr. Geng has undertaken more than 10 national, provincial, and ministerial-level projects, focusing on industrial and medical applications of machine vision and AI. His experience includes pioneering work in hemostatic medical equipment and high-precision 2D/3D measurement systems. This broad range of expertise positions Dr. Geng as a leader in his field, particularly in the integration of AI technologies with practical, real-world applications. 🌍

Awards and Honors

🏅 Dr. Lei Geng’s excellence in research and technological innovation has been recognized through several prestigious awards. He has received three provincial-level awards, including the Tianjin Second Prize for Technological Invention and the Special Prize of the National Award for Business Science and Technology Progress. These accolades are a testament to his significant contributions to the fields of AI, computer vision, and medical technology. Dr. Geng’s ability to bridge the gap between advanced scientific research and practical applications in industries such as healthcare and manufacturing has made him a highly respected figure in the scientific community. 🌟

Research Focus

🔬 Dr. Lei Geng’s research focuses on four key areas:

  1. Image Analysis & Understanding: Developing AI-based systems for image classification, object detection, and segmentation for industrial and medical applications.
  2. Dimensional Measurement: Applying machine vision and 3D scanning technology for high-precision industrial measurement and target positioning.
  3. Hemostatic Medical Equipment: Innovating in extracorporeal compression and intravascular interventional devices for medical bleeding control.
  4. AI in Otorhinolaryngology: Applying deep learning for disease diagnosis in ear, nose, and throat (ENT) medicine.

His work in these areas aims to integrate AI and machine vision to solve real-world problems, particularly in medical diagnostics and industrial automation. 💡

Publication Top Notes:

  • Direct May Not Be the Best: An Incremental Evolution View of Pose Generation
    • Year: 2024
    • Citations: 1
  • Multi-parametric investigations on the effects of vascular disrupting agents based on a platform of chorioallantoic membrane of chick embryos
    • Year: 2024
  • Label-Aware Dual Graph Neural Networks for Multi-Label Fundus Image Classification
    • Year: 2024
  • Cross-scale contrastive triplet networks for graph representation learning
    • Year: 2024
    • Citations: 4
  • Objective rating method for fabric pilling based on LSNet network
    • Year: 2024
    • Citations: 3

Abdul-Majeed Al-Izeri | Data Science | Best Scholar Award

Abdul-Majeed Al-Izeri | Data Science | Best Scholar Award

Dr. Abdul-Majeed Al-Izeri , Clermont Auvergne University, France.

Publication profile

Googlescholar

Education and Experience

  • 2020-2021: University degree in Data Science, University Clermont Auvergne, France. 🎓
  • 2013-2016: PhD in Mathematics (Mathematical analysis of PDEs), University Clermont Auvergne, France. 📜
  • 2011-2012: Master 2 in Mathematical Modelling (PDEs, calculation, epidemiology), University of Bordeaux, France. 💻
  • 2010-2011: Master 1 in Mathematics (Modelling, calculation, environment), University of Bordeaux, France. 📐
  • 2002-2006: BSc in Mathematics, University of Thamar, Yemen. 📘
  • October 2021-Present: Assistant Professor, Applied Mathematics, Clermont Auvergne University, France. 👩‍🏫
  • January 2018-July 2021: Postdoctoral Researcher in Epidemiology and PDEs, Clermont Auvergne University, France. 🔬
  • 2017: Postdoctoral Project in PDEs Dynamics, Clermont Auvergne University, France. 🧮
  • 2013-2016: Thesis Project in Mathematical Analysis of Population Dynamics, Blaise Pascal University, France. 🔍
  • 2012: Research Internship, Epidemic Model Study, University of Bordeaux, France. 💡
  • 2011: Project in Mathematical Modelling for Fishing Resources, University of Bordeaux, France. 🐟

Suitability For The Award

Dr. Abdul-Majeed Al-Izeri is indeed a highly suitable candidate for the Best Scholar Award based on his extensive academic qualifications, professional experience, and notable contributions to the field of Applied Mathematics and Data Science. His academic background, including a PhD in Mathematics with a specialization in Partial Differential Equations (PDEs), as well as a strong postdoctoral research profile, makes him a valuable asset in both academia and research communities.

Professional Development 

Dr. Al-Izeri has gained comprehensive skills in programming languages like Fortran, Matlab, Python, and R, along with proficiency in parallel computation using MPI. His expertise extends to using Latex and other office software for academic writing and presentations. He has been involved in several international research projects focused on applying mathematical theories to solve real-world problems in epidemiology and population dynamics. Dr. Al-Izeri’s ongoing commitment to improving his mathematical expertise and expanding his knowledge in data science and computational methods keeps him at the forefront of his field. 📊💻🔍

Research Focus 

Awards and Honors

  • 2021: Assistant Professor Appointment, Clermont Auvergne University, France. 🎓
  • 2016: PhD Completion, Mathematical Analysis of PDEs, University Clermont Auvergne. 🏆
  • 2012: Research Internship Excellence Award, University of Bordeaux. 🌟
  • 2011: Best Project in Mathematical Modelling for Resource Management, University of Bordeaux. 🏅

Publoication Top Notes

  1. On the solutions for a nonlinear boundary value problem modeling a proliferating cell population with inherited cycle length – AM Al-Izeri, K Latrach, Nonlinear Analysis: Theory, Methods & Applications 143, 1-18, Cited by 6, 2016 📘🧬
  2. Well-posedness of a nonlinear model of proliferating cell populations with inherited cycle length – ALI Abdul-Majeed, K Latrach, Acta Mathematica Scientia 36 (5), 1225-1244, Cited by 5, 2016 📊🧫
  3. Nonlinear semigroup approach to transport equations with delayed neutrons – ALI Abdul-Majeed, K Latrach, Acta Mathematica Scientia 38 (6), 1637-1654, Cited by 3, 2018 🔬⏳
  4. A nonlinear age-structured model of population dynamics with inherited properties – AM Al-Izeri, K Latrach, Mediterranean Journal of Mathematics 13, 1571-1587, Cited by 3, 2016 🌱🔢
  5. On the asymptotic spectrum of a transport operator with elastic and inelastic collision operators – AM Al-Izeri, K Latrach, Acta Mathematica Scientia 40, 805-823, Cited by 2, 2020 🔍🔄
  6. A note on fixed point theory for multivalued mappings – AM Al-Izeri, K Latrach, Fixed Point Theory 24 (1, 2023), 233-240, Cited by 1, 2023 📐📍