Dr. XInbo MA | Machine Learning | Best Researcher Award

Dr. XInbo MA | Machine Learning | Best Researcher Award

Dr. XInbo MA, Northeastern University, China

Ma Xinbo is a prominent figure in the field of geotechnical engineering, currently serving as an Associate Professor at the College of Resources and Civil Engineering, Northeastern University, Shenyang, China. His scholarly pursuits focus on the intelligent detection of internal fractures in mine rock masses, utilizing advanced imaging techniques to enhance the safety and efficiency of mining operations.

Profile:

Scopus​

Education:

Professor Ma earned his Ph.D. in Geotechnical Engineering from Northeastern University, Shenyang, China, in 2010. His doctoral research laid the foundation for his ongoing commitment to advancing mining safety through technological innovation.

Experience:

Throughout his career, Professor Ma has held several academic and research positions. Prior to his current role, he served as a Lecturer and then as an Associate Professor at the same institution. His professional journey reflects a steadfast dedication to both teaching and research in geotechnical engineering.

Research Interests:

Professor Ma’s research interests are centered around the application of intelligent detection methods in mining engineering. A notable area of his work includes the development of techniques for identifying internal fractures in mine rock masses using borehole camera images. This research aims to improve the understanding of rock mass integrity, which is crucial for the safety and sustainability of mining operations.

Publications:

Professor Ma Xinbo has contributed to several scholarly publications, including:

  1. “Abcb1 is Involved in the Efflux of Trivalent Inorganic Arsenic from Brain Microvascular Endothelial Cells” by Man Lv, Ziqiao Guan, Jia Cui, Xinbo Ma, Kunyu Zhang, Xinhua Shao, Meichen Zhang, Yanhui Gao, Yanmei Yang, Xiaona Liu. This study explores the role of Abcb1 in mediating arsenic efflux in brain microvascular endothelial cells. Published in 2024.
  2. “Liberal Arts in China’s Modern Universities: Lessons from the Great Catholic Educator and Statesman, Ma Xiangbo” by You Guo Jiang. This article discusses the contributions of Ma Xiangbo to liberal arts education in modern China. Published in Frontiers of Education in China, Volume 7, Issue 3, in 2012.
  3. “Catholic Intellectuals in Modern China and Their Bible Translation: Li Wenyu and Ma Xiangbo” by Xiaochun Hong. This paper examines the roles of Li Wenyu and Ma Xiangbo in Bible translation efforts in modern China. Published in the Journal of the Royal Asiatic Society, Volume 33, Issue 2, in 2023.

Awards and Recognitions:

Professor Ma’s excellence in research and academia has been acknowledged through various awards and honors. In 2016, he was honored as an Outstanding Graduate of Dalian Maritime University, reflecting his early commitment to academic excellence. He also received the National Scholarship, awarded to the top 0.2% of students by China’s Ministry of Education, in both 2013 and 2016. These accolades highlight his dedication to his field and his institution.

Conclusion:

Professor Ma Xinbo’s academic journey and research endeavors underscore his pivotal role in advancing geotechnical engineering, particularly in the realm of mining safety. His innovative approaches to fracture detection and his commitment to scholarly excellence make him a valuable asset to the academic community and a strong candidate for the “Best Researcher Award.”

Prof. Dr. Lei Geng | Data Analysis | Best Researcher Award

Prof. Dr. Lei Geng | Data Analysis | Best Researcher Award

Prof. Dr. Lei Geng, Tiangong University, China

Prof. Dr. Lei Geng is a distinguished professor at the School of Life Sciences, Tiangong University, with a focus on computer vision, machine learning, and measurement technology. He received his Ph.D. in 2012 from Tianjin University and has since made significant contributions to the fields of AI, machine vision, and medical technology. With over 80 published papers, Dr. Geng has played a pivotal role in the development of advanced imaging and measurement technologies for industrial and medical applications. His research includes applications in image analysis, 3D dimensional measurement, and hemostatic medical equipment. As a leader in his field, he has led more than 10 national and provincial-level projects and received numerous awards for his technological innovations. 🚀

Professional Profile:

Scopus
Orcid

Suitability for the Award

Prof. Dr. Lei Geng is highly suitable for the Best Researcher Award due to his groundbreaking work in AI, machine vision, and medical technology. His research has led to the development of advanced image analysis techniques and high-precision measurement tools, with far-reaching implications for both industrial and healthcare applications. Dr. Geng’s leadership in national and provincial projects, combined with his three provincial-level awards, highlights his ability to drive technological advancements that have a direct impact on society. His contributions to AI-based diagnostics, particularly in otolaryngology, underscore his dedication to improving healthcare through cutting-edge technologies. Prof. Geng’s consistent excellence in research, innovation, and application makes him an ideal candidate for this prestigious award. 🏅

Education

🎓 Dr. Lei Geng earned his Ph.D. in 2012 from Tianjin University, specializing in areas at the intersection of computer vision, machine learning, and measurement technology. His academic journey laid the foundation for his extensive contributions to these fields, including the development of cutting-edge applications in industrial and medical sectors. Dr. Geng’s deep understanding of both theoretical and practical aspects of machine vision and artificial intelligence has made him an expert in creating innovative solutions across multiple industries. His education has fueled his ongoing research and contributions to advancements in AI-driven healthcare and precision measurement technologies. 📘

Experience

🧑‍🏫 Prof. Dr. Lei Geng has extensive teaching and research experience, currently serving as a professor at the School of Life Sciences at Tiangong University. He has been involved in both undergraduate and postgraduate education, teaching courses such as Machine Vision and Deep Learning. Over his career, Dr. Geng has undertaken more than 10 national, provincial, and ministerial-level projects, focusing on industrial and medical applications of machine vision and AI. His experience includes pioneering work in hemostatic medical equipment and high-precision 2D/3D measurement systems. This broad range of expertise positions Dr. Geng as a leader in his field, particularly in the integration of AI technologies with practical, real-world applications. 🌍

Awards and Honors

🏅 Dr. Lei Geng’s excellence in research and technological innovation has been recognized through several prestigious awards. He has received three provincial-level awards, including the Tianjin Second Prize for Technological Invention and the Special Prize of the National Award for Business Science and Technology Progress. These accolades are a testament to his significant contributions to the fields of AI, computer vision, and medical technology. Dr. Geng’s ability to bridge the gap between advanced scientific research and practical applications in industries such as healthcare and manufacturing has made him a highly respected figure in the scientific community. 🌟

Research Focus

🔬 Dr. Lei Geng’s research focuses on four key areas:

  1. Image Analysis & Understanding: Developing AI-based systems for image classification, object detection, and segmentation for industrial and medical applications.
  2. Dimensional Measurement: Applying machine vision and 3D scanning technology for high-precision industrial measurement and target positioning.
  3. Hemostatic Medical Equipment: Innovating in extracorporeal compression and intravascular interventional devices for medical bleeding control.
  4. AI in Otorhinolaryngology: Applying deep learning for disease diagnosis in ear, nose, and throat (ENT) medicine.

His work in these areas aims to integrate AI and machine vision to solve real-world problems, particularly in medical diagnostics and industrial automation. 💡

Publication Top Notes:

  • Direct May Not Be the Best: An Incremental Evolution View of Pose Generation
    • Year: 2024
    • Citations: 1
  • Multi-parametric investigations on the effects of vascular disrupting agents based on a platform of chorioallantoic membrane of chick embryos
    • Year: 2024
  • Label-Aware Dual Graph Neural Networks for Multi-Label Fundus Image Classification
    • Year: 2024
  • Cross-scale contrastive triplet networks for graph representation learning
    • Year: 2024
    • Citations: 4
  • Objective rating method for fabric pilling based on LSNet network
    • Year: 2024
    • Citations: 3

Abdul-Majeed Al-Izeri | Data Science | Best Scholar Award

Abdul-Majeed Al-Izeri | Data Science | Best Scholar Award

Dr. Abdul-Majeed Al-Izeri , Clermont Auvergne University, France.

Publication profile

Googlescholar

Education and Experience

  • 2020-2021: University degree in Data Science, University Clermont Auvergne, France. 🎓
  • 2013-2016: PhD in Mathematics (Mathematical analysis of PDEs), University Clermont Auvergne, France. 📜
  • 2011-2012: Master 2 in Mathematical Modelling (PDEs, calculation, epidemiology), University of Bordeaux, France. 💻
  • 2010-2011: Master 1 in Mathematics (Modelling, calculation, environment), University of Bordeaux, France. 📐
  • 2002-2006: BSc in Mathematics, University of Thamar, Yemen. 📘
  • October 2021-Present: Assistant Professor, Applied Mathematics, Clermont Auvergne University, France. 👩‍🏫
  • January 2018-July 2021: Postdoctoral Researcher in Epidemiology and PDEs, Clermont Auvergne University, France. 🔬
  • 2017: Postdoctoral Project in PDEs Dynamics, Clermont Auvergne University, France. 🧮
  • 2013-2016: Thesis Project in Mathematical Analysis of Population Dynamics, Blaise Pascal University, France. 🔍
  • 2012: Research Internship, Epidemic Model Study, University of Bordeaux, France. 💡
  • 2011: Project in Mathematical Modelling for Fishing Resources, University of Bordeaux, France. 🐟

Suitability For The Award

Dr. Abdul-Majeed Al-Izeri is indeed a highly suitable candidate for the Best Scholar Award based on his extensive academic qualifications, professional experience, and notable contributions to the field of Applied Mathematics and Data Science. His academic background, including a PhD in Mathematics with a specialization in Partial Differential Equations (PDEs), as well as a strong postdoctoral research profile, makes him a valuable asset in both academia and research communities.

Professional Development 

Dr. Al-Izeri has gained comprehensive skills in programming languages like Fortran, Matlab, Python, and R, along with proficiency in parallel computation using MPI. His expertise extends to using Latex and other office software for academic writing and presentations. He has been involved in several international research projects focused on applying mathematical theories to solve real-world problems in epidemiology and population dynamics. Dr. Al-Izeri’s ongoing commitment to improving his mathematical expertise and expanding his knowledge in data science and computational methods keeps him at the forefront of his field. 📊💻🔍

Research Focus 

Awards and Honors

  • 2021: Assistant Professor Appointment, Clermont Auvergne University, France. 🎓
  • 2016: PhD Completion, Mathematical Analysis of PDEs, University Clermont Auvergne. 🏆
  • 2012: Research Internship Excellence Award, University of Bordeaux. 🌟
  • 2011: Best Project in Mathematical Modelling for Resource Management, University of Bordeaux. 🏅

Publoication Top Notes

  1. On the solutions for a nonlinear boundary value problem modeling a proliferating cell population with inherited cycle length – AM Al-Izeri, K Latrach, Nonlinear Analysis: Theory, Methods & Applications 143, 1-18, Cited by 6, 2016 📘🧬
  2. Well-posedness of a nonlinear model of proliferating cell populations with inherited cycle length – ALI Abdul-Majeed, K Latrach, Acta Mathematica Scientia 36 (5), 1225-1244, Cited by 5, 2016 📊🧫
  3. Nonlinear semigroup approach to transport equations with delayed neutrons – ALI Abdul-Majeed, K Latrach, Acta Mathematica Scientia 38 (6), 1637-1654, Cited by 3, 2018 🔬⏳
  4. A nonlinear age-structured model of population dynamics with inherited properties – AM Al-Izeri, K Latrach, Mediterranean Journal of Mathematics 13, 1571-1587, Cited by 3, 2016 🌱🔢
  5. On the asymptotic spectrum of a transport operator with elastic and inelastic collision operators – AM Al-Izeri, K Latrach, Acta Mathematica Scientia 40, 805-823, Cited by 2, 2020 🔍🔄
  6. A note on fixed point theory for multivalued mappings – AM Al-Izeri, K Latrach, Fixed Point Theory 24 (1, 2023), 233-240, Cited by 1, 2023 📐📍

 

Elena Zaitseva | Data Mining | Best Researcher Award

Elena Zaitseva | Data Mining | Best Researcher Award

Prof. Dr. Elena Zaitseva, University of Zilina , Slovakia.

Publication profile

Scopus
Googlscholar
Orcid

Education And Experiance

  • 🎓 MSc in Computer Science (1989) – Radioengineering Institute, Minsk, Belarus.
  • 🎓 Ph.D. in Computer Science (1994) – State University of Informatics and Radioelectronics, Belarus.
  • 🎓 Associate Professor in Applied Informatics (1998) – Belarus State Economic University.
  • 🎓 Professor in Applied Informatics (2015) – University of Žilina, Slovakia.
  • 👩‍🏫 Teaching: Courses on Applied Informatics, C++, Neural Networks, Reliability Analysis, and Decision-Making Systems.
  • 🧑‍💻 Research: Focus on multiple-valued logic, reliability analysis, and data mining applications.

Suitability For The Award

Prof. Dr. Elena Zaitseva is an exceptionally qualified candidate for the Best Researcher Award due to her remarkable academic career, innovative contributions to multiple research domains, and leadership roles in international scientific communities. With over three decades of professional experience, she has made significant advancements in applied informatics, reliability analysis, and multiple-valued logic, among other fields. Her work seamlessly bridges theoretical research and practical applications, particularly in data mining, healthcare reliability, and decision support systems.

Professional Development 

🌐 Elena Zaitseva is a prominent member of various international organizations, including the Gnedenko Forum and IEEE Czechoslovakia Section Reliability Society, where she chairs significant committees. She has been co-editor and editorial board member for several journals, such as Mathematical Problems in Engineering and Innovative Technologies and Scientific Solutions for Industries. Her leadership extends to steering technical chapters in European Safety and Reliability Association (ESRA). Through her dedication to professional excellence, she mentors researchers worldwide, advances computational reliability, and fosters interdisciplinary collaboration. Her innovative spirit is reflected in her contributions to the reliability and biomedical informatics communities. 🌟

Research Focus 

Awards and Honors

  • 🏆 Chair of IEEE Czechoslovakia Section Reliability Society Chapter (2018 – Present).
  • 🎖️ Chair of ESRA Technical Chapter on Information Technologies and Communication (2011 – Present).
  • 📜 Member of Editorial Boards for numerous international journals, including CERES and Mathematical Problems in Engineering.
  • 🏅 Recognized for leadership in Gnedenko Forum and European safety initiatives.
  • 🌟 Renowned for her impactful contributions to reliability and statistical studies in academia and industry.

Publoication Top Notes

  • Review of artificial intelligence and machine learning technologies: Classification, restrictions, opportunities, and challenges (Cited by: 173, Year: 2022) 🌟🤖
  • Construction of a reliability structure function based on uncertain data (Cited by: 93, Year: 2016) 📊🔍
  • Reliability analysis of multi-state system with application of multiple-valued logic (Cited by: 84, Year: 2017) ⚙️🧮
  • Review of some applications of unmanned aerial vehicles technology in the resource-rich country (Cited by: 70, Year: 2021) 🚁🌍
  • Multiple-valued logic mathematical approaches for multi-state system reliability analysis (Cited by: 66, Year: 2013) 🔢📐
  • Importance analysis by logical differential calculus (Cited by: 65, Year: 2013) 📖⚡
  • A review of continuous authentication using behavioral biometrics (Cited by: 59, Year: 2016) 🖥️🔑

Mohammadreza Mahmoudi | Data Science | Best Researcher Award

Dr. Mohammadreza Mahmoudi | Data Science | Best Researcher Award

Professor, Fasa University, Iran 

Dr. Mohammadreza Mahmoudi is an esteemed researcher with a robust background in mathematical statistics and applied probability. His contributions span several impactful projects, including advanced statistical methods and applications in diverse fields. His research excellence and distinguished academic career make him a strong candidate for the Best Researcher Award.

Professional Profile:

Scopus

Summary of Suitability for the Research for Best Researcher Award: 

Dr. Mohammadreza Mahmoudi stands out as a prime candidate for the Best Researcher Award due to his exceptional contributions to mathematical statistics and applied probability. His extensive research on periodograms, statistical properties of simple processes, and advanced non-parametric methodologies demonstrates a deep expertise in his field. Dr. Mahmoudi’s accolades, including being a top student at all levels of his education and his role as an Advisory Board Member of ScienceVier Canada, underscore his recognition and influence in statistical research. His robust teaching experience and impactful projects further solidify his suitability for this prestigious award, highlighting his dedication to advancing statistical science and education.

🎓Education:

Dr. Mahmoudi completed his Ph.D. in Mathematical Statistics (Applied Probability) from Shiraz University in 2016, following a Master of Science in Mathematical Statistics and a Bachelor of Science in Statistics from the same institution. His educational journey reflects a profound commitment to advancing statistical science.

🏢Work Experience:

Dr. Mahmoudi has served as a researcher and educator in statistical methodologies, specializing in areas such as time series analysis, stochastic processes, and nonparametric methodologies. He has been actively involved in teaching a broad range of statistical courses at Shiraz University and has contributed to several high-impact research projects.

🏆Awards and Grants:

Dr. Mahmoudi has been recognized as a top student during his Ph.D., M.Sc., and B.Sc. periods at Shiraz University. He has also been elected as an Advisory Board Member of ScienceVier Canada, showcasing his expertise and influence in the field of statistics.

Publication Top Notes:

  1. “Machine learning models for predicting interactions between air pollutants in Tehran Megacity, Iran”
    • Year: 2024
    • Journal: Alexandria Engineering Journal
  2. “Solving optimal control problems governed by nonlinear PDEs using a multilevel method based on an artificial neural network”
    • Year: 2024
    • Journal: Computational and Applied Mathematics
  3. “The removal of methylene blue from aqueous solutions by polyethylene microplastics: Modeling batch adsorption using random forest regression”
    • Year: 2024
    • Journal: Alexandria Engineering Journal
  4. “Meteorological Drought Prediction Based on Evaluating the Efficacy of Several Prediction Models”
    • Year: 2024
    • Journal: Water Resources Management
  5. “Spatial and temporal assessment and forecasting vulnerability to meteorological drought”
    • Year: 2024
    • Journal: Environment, Development and Sustainability
  6. “Assessment of Continuity Changes in Spatial and Temporal Trend of Rainfall and Drought”
    • Year: 2023
    • Journal: Pure and Applied Geophysics
  7. “Using the multiple linear regression based on the relative importance metric and data visualization models for assessing the ability of drought indices”
    • Year: 2023
    • Journal: Journal of Water and Climate Change
  8. “Dryland farming wheat yield prediction using the Lasso regression model and meteorological variables in dry and semi-dry region”
    • Year: 2023
    • Journal: Stochastic Environmental Research and Risk Assessment
  9. “Cyclic clustering approach to impute missing values for cyclostationary hydrological time series”
    • Year: 2023
    • Journal: Quality and Quantity
  10. “Statistical and Mathematical Modeling for Predicting Caffeine Removal from Aqueous Media by Rice Husk-Derived Activated Carbon”
    • Year: 2023
    • Journal: Sustainability (Switzerland)