Dr. Tanushree Bhattacharjee | Emerging Technologies | Best Researcher Award

Dr. Tanushree Bhattacharjee | Emerging Technologies | Best Researcher Award

Dr. Tanushree Bhattacharjee, GRIDsentry Private Limited, India

Dr. Tanushree Bhattacharjee is a distinguished cybersecurity expert specializing in substation automation, OT security, and intrusion detection systems (IDS). With a Ph.D. in Electrical Engineering from Jamia Millia Islamia, she has over seven years of experience securing critical infrastructure. As Sr. R&D Manager at GRIDsentry Pvt. Ltd., Bengaluru, she leads cutting-edge research in forensic analysis, deep packet inspection, and AI-powered threat modeling. Dr. Bhattacharjee has played a vital role in national and international cybersecurity testbeds, contributing to the advancement of IEC 61850, power grid security, and microgrid protection. Her expertise in AI/ML-based anomaly detection ensures the resilience of modern power systems. 🔐⚡

🌍 Professional Profile:

Google Scholar

Orcid

Scopus

🏆 Suitability for the Best Researcher Award 

Dr. Tanushree Bhattacharjee is an outstanding candidate for the Best Researcher Award, given her pioneering work in substation automation security and digital transformation. She has made significant contributions to intrusion detection, vulnerability assessment, and OT security in power grids. Her leadership in developing IDS/IPS solutions, coupled with her expertise in AI-powered anomaly detection, positions her as a key innovator in cyber-physical security. With a strong background in threat modeling, forensic analysis, and protocol security, her research directly impacts critical infrastructure protection. Her proven ability to bridge AI with cybersecurity makes her a deserving nominee for this prestigious recognition. 🏆🔍

🎓 Education

Dr. Tanushree Bhattacharjee holds a Ph.D. in Electrical Engineering from Jamia Millia Islamia, New Delhi (2017-2022), where she focused on substation automation and microgrid protection. She completed her Master’s in Power Systems at the Indian Institute of Engineering Science & Technology, Shibpur (2012-2014). Her academic work involved IEC 61850 protocols, cybersecurity in digital substations, and AI-driven security frameworks. Through hands-on research in power system modeling, microgrid security, and forensic analysis, she has contributed to cybersecurity innovations in critical infrastructure. Her education has provided a robust foundation for her advancements in intrusion detection and digital protection strategies. 🎓⚡🔬

💼 Experience 

As Sr. R&D Manager at GRIDsentry Pvt. Ltd., Bengaluru, Dr. Bhattacharjee leads research on intrusion detection systems (IDS), AI-driven threat modeling, and forensic analysis. Previously, as a Product Manager, she specialized in deep packet inspection and anomaly detection. She also worked as a Power System Security Engineer, focusing on IPS/IDS development and OT cybersecurity. Her tenure at Jamia Millia Islamia involved substation automation, protocol security, and microgrid testing. With expertise in vulnerability assessments, access control, and live cybersecurity testing, she has significantly contributed to the security of modern power infrastructures. 🔒💡🚀

🏅 Awards & Honors 

Dr. Bhattacharjee has received multiple accolades for her contributions to power system cybersecurity. She has been recognized for her outstanding research in IDS and AI-driven security mechanisms. Her work on IEC 61850-based intrusion detection won Best Paper Awards at leading cybersecurity conferences. She has been acknowledged by cybersecurity organizations for her role in developing AI-based threat detection tools. Additionally, she has contributed to national security projects, earning commendation from government agencies and industry leaders. Her expertise in forensic analysis, digital substation security, and OT cybersecurity has positioned her as a trailblazer in the field. 🏆🔍⚡

🔬 Research Focus

Dr. Bhattacharjee’s research integrates emerging technologies with cybersecurity, focusing on power system protection, IEC 61850 protocols, and digital substation automation. Her expertise includes intrusion detection, AI-based anomaly detection, and forensic security analysis. She explores cyber-physical system security, ensuring resilience against DDoS, MITM, and replay attacks. Her work in deep learning for security event detection enhances smart grid protection. She also specializes in protocol security, AI-driven attack mitigation, and operational technology (OT) cybersecurity. Through machine learning, threat modeling, and real-time testing, her research aims to fortify modern power infrastructures against evolving cyber threats. 🛰️🔐⚙️

📖 Publication Top Notes

  1. Hardware Development and Interoperability Testing of a Multivendor-IEC-61850-Based Digital Substation
    • Citations: 11
    • Year: 2022
  2. Planning of Renewable DGs for Distribution Network Considering Load Model: A Multi-Objective Approach
    • Citations: 9
    • Year: 2014
  1. Designing a Controller Circuit for Three-Phase Inverter in PV Application
    • Citations: 6
    • Year: 2018
  2. Digital Substations with the IEC 61850 Standard
    • Citations: 3
    • Year: 2021
  3. Power Quality Improvement of Grid Integrated Distributed Energy Resource Inverter
    • Citations: 2
    • Year: 2021

 

Mr. JeongHun Woo | Network Services | Excellence in Research

Mr. JeongHun Woo | Network Services | Excellence in Research

Mr. JeongHun Woo, Changwon National University, South Korea

Mr. JeongHun Woo is a dedicated researcher specializing in Network Services, Wireless Networks, and Streaming Optimization. He completed his education at Changwon National University, South Korea, and has been actively involved in cutting-edge research projects, particularly in AI-based optimization and predictive analytics. His work on Yard Image AI Recognition for logistics optimization resulted in a technology patent, showcasing his innovative contributions to industrial applications. Additionally, his 2023 first-author publication on adaptive bitrate algorithms and bandwidth prediction has significantly enhanced video streaming quality. His ongoing research on CNC tool replacement cycle prediction highlights his expertise in applying machine learning to industrial automation. With a strong foundation in AI-driven network optimizations and industrial predictive modeling, Mr. Woo continues to push technological boundaries, contributing valuable insights to academia and industry. His research excellence makes him a key player in advancing intelligent network systems. 📡📶🔬

🌏 Professional Profile

Google Scholar

🏆 Suitability for Award 

Mr. JeongHun Woo’s outstanding contributions to network optimization, AI-driven prediction models, and wireless communication technologies make him a strong candidate for the Excellence in Research Award. His groundbreaking work in adaptive video streaming algorithms has significantly improved the Quality of Experience (QoE) in streaming services, addressing critical issues in network bandwidth prediction. His Smart Yard AI project, which optimizes industrial logistics through image recognition, showcases his ability to bridge academic research with real-world applications. The issuance of a technology patent from his research further validates the impact of his work. His ongoing research on predictive maintenance for CNC machine tools highlights his versatility in applying AI-driven methodologies to industrial automation and smart manufacturing. His ability to produce innovative, high-impact research across wireless networks, AI, and predictive analytics sets him apart as a leading researcher in his field. 🏆📡📊

🎓 Education 

Mr. JeongHun Woo pursued his education at Changwon National University, South Korea, where he developed a strong foundation in Network Services, Wireless Communication, and AI-Driven Optimization. His academic journey equipped him with expertise in machine learning applications, network bandwidth prediction, and industrial AI integration. Throughout his education, he focused on research-driven problem-solving, contributing to the development of streaming optimization algorithms and predictive analytics for industrial automation. His exposure to AI-powered logistics and wireless technologies has positioned him as an emerging expert in intelligent network solutions. His academic background not only fueled his passion for research but also enabled him to lead innovative projects such as AI-based yard logistics optimization and CNC machine tool lifecycle prediction. With a strong interdisciplinary approach, his education has played a crucial role in shaping his research excellence and industry-driven solutions. 🎓📚🔍

👨‍🔬 Experience

Mr. JeongHun Woo has been deeply engaged in research projects that integrate AI, wireless communication, and industrial automation. He played a key role in the Smart Yard Industry-Academic Cooperation Project (2022), where he developed an AI-based image recognition system to optimize logistics and process flow in industrial yards. This work led to the successful issuance of a technology patent, reinforcing his contributions to real-world AI applications.

In 2023, he authored a research paper focusing on adaptive bitrate algorithms and bandwidth prediction for enhanced video streaming experiences. His work in network bandwidth prediction using gated recurrent unit models demonstrated his expertise in machine learning-driven optimizations. Currently, he is working on predicting CNC machine tool replacement cycles, leveraging AI for predictive maintenance in smart manufacturing. His diverse experience across network systems, industrial AI applications, and streaming optimizations showcases his strong research acumen and technological impact. 🏭📡🤖

🏆 Awards and Honors 

Mr. JeongHun Woo has been recognized for his pioneering research in wireless networks, AI-driven optimization, and industrial analytics. His Smart Yard AI Recognition project led to the issuance of a technology patent, highlighting the innovative real-world impact of his research. His 2023 first-author publication on adaptive bitrate streaming and bandwidth prediction has been widely acknowledged in the field of wireless networks and multimedia communication.

He has been actively involved in industry-academic collaborative projects, leading groundbreaking research that merges AI with industrial automation. His contributions to predictive analytics for CNC machine tool maintenance have positioned him at the forefront of smart manufacturing and AI-driven optimization. Through his patented technology, high-impact publications, and ongoing research in predictive maintenance, Mr. Woo has demonstrated exceptional excellence in research, making him a deserving candidate for the Research for Excellence in Research Award. 🏆📜🚀

🔬 Research Focus 

Mr. JeongHun Woo’s research revolves around Network Services, Wireless Networks, Streaming Optimization, and AI-driven Industrial Automation. His work is at the intersection of machine learning, predictive analytics, and real-world network applications.

His key research areas include:

Streaming Optimization: Developing buffer-based adaptive bitrate algorithms to improve the Quality of Experience (QoE) for video streaming.
AI for Industrial Automation: Leading AI-driven logistics optimization through yard image recognition and predictive maintenance in smart manufacturing.
Wireless Networks & Bandwidth Prediction: Utilizing deep learning (Gated Recurrent Unit models) for accurate network bandwidth forecasting.
Predictive Maintenance: Researching CNC machine tool lifecycle prediction to enhance manufacturing efficiency and reduce downtime.

His interdisciplinary approach combining network optimizations, AI, and industrial analytics makes him a key contributor to next-generation intelligent systems. 🌍📶📊

📚 Publication Top Notes:

Title: Improving the Quality of Experience of Video Streaming Through a Buffer-Based Adaptive Bitrate Algorithm and Gated Recurrent Unit-Based Network Bandwidth Prediction
Published Year: 2024